时空对偶图神经网络的旅行时间估计

IF 1.2 Q4 REMOTE SENSING
Guangyin Jin, Huan Yan, Fuxian Li, Jincai Huang, Yong Li
{"title":"时空对偶图神经网络的旅行时间估计","authors":"Guangyin Jin, Huan Yan, Fuxian Li, Jincai Huang, Yong Li","doi":"10.1145/3627819","DOIUrl":null,"url":null,"abstract":"Travel time estimation is one of the core tasks for the development of intelligent transportation systems. Most previous works model the road segments or intersections separately by learning their spatio-temporal characteristics to estimate travel time. However, due to the continuous alternations of the road segments and intersections in a path, the dynamic features are supposed to be coupled and interactive. Therefore, modeling one of them limits further improvement in accuracy of estimating travel time. To address the above problems, a novel graph-based deep learning framework for travel time estimation is proposed in this paper, namely Spatio-Temporal Dual Graph Neural Networks (STDGNN). Specifically, we first establish the node-wise and edge-wise graphs to respectively characterize the adjacency relations of intersections and that of road segments. In order to extract the joint spatio-temporal correlations of the intersections and road segments, we adopt the spatio-temporal dual graph learning approach that incorporates multiple spatial-temporal dual graph learning modules with multi-scale network architectures for capturing multi-level spatial-temporal information from the dual graph. Finally, we employ the multi-task learning approach to estimate the travel time of a given whole route, each road segment and intersection simultaneously. We conduct extensive experiments to evaluate our proposed model on three real-world trajectory datasets, and the experimental results show that STDGNN significantly outperforms several state-of-art baselines.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Spatio-Temporal Dual Graph Neural Networks for Travel Time Estimation\",\"authors\":\"Guangyin Jin, Huan Yan, Fuxian Li, Jincai Huang, Yong Li\",\"doi\":\"10.1145/3627819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Travel time estimation is one of the core tasks for the development of intelligent transportation systems. Most previous works model the road segments or intersections separately by learning their spatio-temporal characteristics to estimate travel time. However, due to the continuous alternations of the road segments and intersections in a path, the dynamic features are supposed to be coupled and interactive. Therefore, modeling one of them limits further improvement in accuracy of estimating travel time. To address the above problems, a novel graph-based deep learning framework for travel time estimation is proposed in this paper, namely Spatio-Temporal Dual Graph Neural Networks (STDGNN). Specifically, we first establish the node-wise and edge-wise graphs to respectively characterize the adjacency relations of intersections and that of road segments. In order to extract the joint spatio-temporal correlations of the intersections and road segments, we adopt the spatio-temporal dual graph learning approach that incorporates multiple spatial-temporal dual graph learning modules with multi-scale network architectures for capturing multi-level spatial-temporal information from the dual graph. Finally, we employ the multi-task learning approach to estimate the travel time of a given whole route, each road segment and intersection simultaneously. We conduct extensive experiments to evaluate our proposed model on three real-world trajectory datasets, and the experimental results show that STDGNN significantly outperforms several state-of-art baselines.\",\"PeriodicalId\":43641,\"journal\":{\"name\":\"ACM Transactions on Spatial Algorithms and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Spatial Algorithms and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3627819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3627819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 7

摘要

行车时间估计是智能交通系统发展的核心问题之一。以往的研究大多是通过学习路段或交叉路口的时空特征,分别对其进行建模来估计行车时间。然而,由于道路上的路段和交叉口的不断变化,动态特征必须是耦合和交互的。因此,对其中一个模型的建模限制了进一步提高估计旅行时间的精度。为了解决上述问题,本文提出了一种基于图的深度学习框架,即时空对偶图神经网络(STDGNN)。具体来说,我们首先建立节点和边缘图,分别表征交叉口和路段的邻接关系。为了提取交叉口和路段的联合时空相关性,我们采用了时空对偶图学习方法,该方法将多个时空对偶图学习模块与多尺度网络架构相结合,从对偶图中获取多层次时空信息。最后,我们采用多任务学习方法同时估计给定整条路线、每个路段和交叉口的行驶时间。我们在三个真实世界的轨迹数据集上进行了大量的实验来评估我们提出的模型,实验结果表明STDGNN显著优于几种最先进的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-Temporal Dual Graph Neural Networks for Travel Time Estimation
Travel time estimation is one of the core tasks for the development of intelligent transportation systems. Most previous works model the road segments or intersections separately by learning their spatio-temporal characteristics to estimate travel time. However, due to the continuous alternations of the road segments and intersections in a path, the dynamic features are supposed to be coupled and interactive. Therefore, modeling one of them limits further improvement in accuracy of estimating travel time. To address the above problems, a novel graph-based deep learning framework for travel time estimation is proposed in this paper, namely Spatio-Temporal Dual Graph Neural Networks (STDGNN). Specifically, we first establish the node-wise and edge-wise graphs to respectively characterize the adjacency relations of intersections and that of road segments. In order to extract the joint spatio-temporal correlations of the intersections and road segments, we adopt the spatio-temporal dual graph learning approach that incorporates multiple spatial-temporal dual graph learning modules with multi-scale network architectures for capturing multi-level spatial-temporal information from the dual graph. Finally, we employ the multi-task learning approach to estimate the travel time of a given whole route, each road segment and intersection simultaneously. We conduct extensive experiments to evaluate our proposed model on three real-world trajectory datasets, and the experimental results show that STDGNN significantly outperforms several state-of-art baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
5.30%
发文量
43
期刊介绍: ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信