{"title":"ris辅助集成卫星双工无人机中继地面网络,硬件不完善和同信道干扰","authors":"Jiu Sun, Kefeng Guo, Feng Zhou, Xueling Wang, Mingfu Zhu","doi":"10.1186/s13634-023-01067-2","DOIUrl":null,"url":null,"abstract":"Abstract Increasing the spectrum and time utilization rate is the goal of the next wireless communication networks. This work studies the outage performance of the reconfigurable intelligent surface (RIS)-aided integrated satellite duplex unmanned-aerial-vehicle relay terrestrial networks. Especially, the RIS is installed in the tall building to enhance the communication. To further increase the time utilization rate, the duplex unmanned aerial vehicle is utilized to enhance the time utilization efficiency. However, owing to the practical reasons, the imperfect hardware and co-channel interference are further researched in this paper. Particularly, the accurate expression for the outage probability (OP) is gotten to confirm the effects of RIS parameters, channel parameters and imperfect hardware on the considered network. To gain more insights of the OP at high signal-to-noise ratios, the asymptotic analysis for the OP is derived. Finally, some Monte Carlo simulations are provided to verify the rightness of the theoretical analysis. The simulations indicate that the OP is mainly judged by the satellite transmission link. The results also indicate that although RIS can enhance the system performance, the system performance is not decided by RIS.","PeriodicalId":49203,"journal":{"name":"Eurasip Journal on Advances in Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ris-aided integrated satellite duplex UAV relay terrestrial networks with imperfect hardware and co-channel interference\",\"authors\":\"Jiu Sun, Kefeng Guo, Feng Zhou, Xueling Wang, Mingfu Zhu\",\"doi\":\"10.1186/s13634-023-01067-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Increasing the spectrum and time utilization rate is the goal of the next wireless communication networks. This work studies the outage performance of the reconfigurable intelligent surface (RIS)-aided integrated satellite duplex unmanned-aerial-vehicle relay terrestrial networks. Especially, the RIS is installed in the tall building to enhance the communication. To further increase the time utilization rate, the duplex unmanned aerial vehicle is utilized to enhance the time utilization efficiency. However, owing to the practical reasons, the imperfect hardware and co-channel interference are further researched in this paper. Particularly, the accurate expression for the outage probability (OP) is gotten to confirm the effects of RIS parameters, channel parameters and imperfect hardware on the considered network. To gain more insights of the OP at high signal-to-noise ratios, the asymptotic analysis for the OP is derived. Finally, some Monte Carlo simulations are provided to verify the rightness of the theoretical analysis. The simulations indicate that the OP is mainly judged by the satellite transmission link. The results also indicate that although RIS can enhance the system performance, the system performance is not decided by RIS.\",\"PeriodicalId\":49203,\"journal\":{\"name\":\"Eurasip Journal on Advances in Signal Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasip Journal on Advances in Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13634-023-01067-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Advances in Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13634-023-01067-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Ris-aided integrated satellite duplex UAV relay terrestrial networks with imperfect hardware and co-channel interference
Abstract Increasing the spectrum and time utilization rate is the goal of the next wireless communication networks. This work studies the outage performance of the reconfigurable intelligent surface (RIS)-aided integrated satellite duplex unmanned-aerial-vehicle relay terrestrial networks. Especially, the RIS is installed in the tall building to enhance the communication. To further increase the time utilization rate, the duplex unmanned aerial vehicle is utilized to enhance the time utilization efficiency. However, owing to the practical reasons, the imperfect hardware and co-channel interference are further researched in this paper. Particularly, the accurate expression for the outage probability (OP) is gotten to confirm the effects of RIS parameters, channel parameters and imperfect hardware on the considered network. To gain more insights of the OP at high signal-to-noise ratios, the asymptotic analysis for the OP is derived. Finally, some Monte Carlo simulations are provided to verify the rightness of the theoretical analysis. The simulations indicate that the OP is mainly judged by the satellite transmission link. The results also indicate that although RIS can enhance the system performance, the system performance is not decided by RIS.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.