基于ssvep的脑机接口刺激频率自动选择

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Algorithms Pub Date : 2023-10-29 DOI:10.3390/a16110502
Alexey Kozin, Anton Gerasimov, Maxim Bakaev, Anton Pashkov, Olga Razumnikova
{"title":"基于ssvep的脑机接口刺激频率自动选择","authors":"Alexey Kozin, Anton Gerasimov, Maxim Bakaev, Anton Pashkov, Olga Razumnikova","doi":"10.3390/a16110502","DOIUrl":null,"url":null,"abstract":"Brain–computer interfaces (BCIs) based on steady-state visually evoked potentials (SSVEPs) are inexpensive and do not require user training. However, the highly personalized reaction to visual stimulation is an obstacle to the wider application of this technique, as it can be ineffective, tiring, or even harmful at certain frequencies. In our experimental study, we proposed a new approach to the selection of optimal frequencies of photostimulation. By using a custom photostimulation device, we covered a frequency range from 5 to 25 Hz with 1 Hz increments, recording the subjects’ brainwave activity (EEG) and analyzing the signal-to-noise ratio (SNR) changes at the corresponding frequencies. The proposed set of SNR-based coefficients and the discomfort index, determined by the ratio of theta and beta rhythms in the EEG signal, enables the automation of obtaining the recommended stimulation frequencies for use in SSVEP-based BCIs.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"312 2","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automating Stimulation Frequency Selection for SSVEP-Based Brain-Computer Interfaces\",\"authors\":\"Alexey Kozin, Anton Gerasimov, Maxim Bakaev, Anton Pashkov, Olga Razumnikova\",\"doi\":\"10.3390/a16110502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain–computer interfaces (BCIs) based on steady-state visually evoked potentials (SSVEPs) are inexpensive and do not require user training. However, the highly personalized reaction to visual stimulation is an obstacle to the wider application of this technique, as it can be ineffective, tiring, or even harmful at certain frequencies. In our experimental study, we proposed a new approach to the selection of optimal frequencies of photostimulation. By using a custom photostimulation device, we covered a frequency range from 5 to 25 Hz with 1 Hz increments, recording the subjects’ brainwave activity (EEG) and analyzing the signal-to-noise ratio (SNR) changes at the corresponding frequencies. The proposed set of SNR-based coefficients and the discomfort index, determined by the ratio of theta and beta rhythms in the EEG signal, enables the automation of obtaining the recommended stimulation frequencies for use in SSVEP-based BCIs.\",\"PeriodicalId\":7636,\"journal\":{\"name\":\"Algorithms\",\"volume\":\"312 2\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/a16110502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a16110502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

基于稳态视觉诱发电位(ssvep)的脑机接口(bci)价格低廉,不需要用户培训。然而,对视觉刺激的高度个性化反应阻碍了这项技术的广泛应用,因为它在某些频率下可能无效、累人甚至有害。在我们的实验研究中,我们提出了一种选择最佳光刺激频率的新方法。我们使用定制的光刺激装置,在5 ~ 25 Hz的频率范围内,以1 Hz的增量记录受试者的脑电波活动,并分析相应频率下的信噪比变化。所提出的一组基于信噪比的系数和不适指数,由脑电图信号中θ和β节律的比值决定,可以自动获得推荐的刺激频率,用于基于ssvep的脑机接口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automating Stimulation Frequency Selection for SSVEP-Based Brain-Computer Interfaces
Brain–computer interfaces (BCIs) based on steady-state visually evoked potentials (SSVEPs) are inexpensive and do not require user training. However, the highly personalized reaction to visual stimulation is an obstacle to the wider application of this technique, as it can be ineffective, tiring, or even harmful at certain frequencies. In our experimental study, we proposed a new approach to the selection of optimal frequencies of photostimulation. By using a custom photostimulation device, we covered a frequency range from 5 to 25 Hz with 1 Hz increments, recording the subjects’ brainwave activity (EEG) and analyzing the signal-to-noise ratio (SNR) changes at the corresponding frequencies. The proposed set of SNR-based coefficients and the discomfort index, determined by the ratio of theta and beta rhythms in the EEG signal, enables the automation of obtaining the recommended stimulation frequencies for use in SSVEP-based BCIs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algorithms
Algorithms Mathematics-Numerical Analysis
CiteScore
4.10
自引率
4.30%
发文量
394
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信