{"title":"ECAP路径对AA6061-T4回收薄片力学性能和组织的影响","authors":"Rawa Mohammed, Ayad Shahab","doi":"10.30684/etj.2023.142412.1530","DOIUrl":null,"url":null,"abstract":"Two routes, BC and C, were scrutinized, and the outcomes displayed significant enhancements in properties for the recycled chips after the hot extruded and ECAP techniques. After the fourth run, route BC exhibited a maximum Ultimate tensile strength of 265 MPa, peak yield strength of 149 MPa, and an elongation to failure of 46%. Meanwhile, the corresponding values for route C were 238 MPa, 136 MPa, and 41%, respectively. For two routes, BC and C, every pass led to elevated strength and hardness while also contributing to increased elongation to failure. The microstructures and mechanical characteristics of the ECAPed samples surpassed those of the extruded sample. The routes and pass numbers substantially impacted the microstructures and mechanical properties of the solid-state recycled AA6061-T4 alloy chip specimens. Scanning electron microscopy pictures showcased a honeybee-type pattern following ECAP through route BC, signifying the final stages of grain refinement. At the same time, the initial sample exhibited a fracture tendency with a mix of brittleness and ductility.","PeriodicalId":476841,"journal":{"name":"Maǧallaẗ al-handasaẗ wa-al-tiknūlūǧiyā","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of ECAP Routes on Mechanical Properties and Microstructure of AA6061-T4 Recycled Chips\",\"authors\":\"Rawa Mohammed, Ayad Shahab\",\"doi\":\"10.30684/etj.2023.142412.1530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two routes, BC and C, were scrutinized, and the outcomes displayed significant enhancements in properties for the recycled chips after the hot extruded and ECAP techniques. After the fourth run, route BC exhibited a maximum Ultimate tensile strength of 265 MPa, peak yield strength of 149 MPa, and an elongation to failure of 46%. Meanwhile, the corresponding values for route C were 238 MPa, 136 MPa, and 41%, respectively. For two routes, BC and C, every pass led to elevated strength and hardness while also contributing to increased elongation to failure. The microstructures and mechanical characteristics of the ECAPed samples surpassed those of the extruded sample. The routes and pass numbers substantially impacted the microstructures and mechanical properties of the solid-state recycled AA6061-T4 alloy chip specimens. Scanning electron microscopy pictures showcased a honeybee-type pattern following ECAP through route BC, signifying the final stages of grain refinement. At the same time, the initial sample exhibited a fracture tendency with a mix of brittleness and ductility.\",\"PeriodicalId\":476841,\"journal\":{\"name\":\"Maǧallaẗ al-handasaẗ wa-al-tiknūlūǧiyā\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maǧallaẗ al-handasaẗ wa-al-tiknūlūǧiyā\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30684/etj.2023.142412.1530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maǧallaẗ al-handasaẗ wa-al-tiknūlūǧiyā","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30684/etj.2023.142412.1530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of ECAP Routes on Mechanical Properties and Microstructure of AA6061-T4 Recycled Chips
Two routes, BC and C, were scrutinized, and the outcomes displayed significant enhancements in properties for the recycled chips after the hot extruded and ECAP techniques. After the fourth run, route BC exhibited a maximum Ultimate tensile strength of 265 MPa, peak yield strength of 149 MPa, and an elongation to failure of 46%. Meanwhile, the corresponding values for route C were 238 MPa, 136 MPa, and 41%, respectively. For two routes, BC and C, every pass led to elevated strength and hardness while also contributing to increased elongation to failure. The microstructures and mechanical characteristics of the ECAPed samples surpassed those of the extruded sample. The routes and pass numbers substantially impacted the microstructures and mechanical properties of the solid-state recycled AA6061-T4 alloy chip specimens. Scanning electron microscopy pictures showcased a honeybee-type pattern following ECAP through route BC, signifying the final stages of grain refinement. At the same time, the initial sample exhibited a fracture tendency with a mix of brittleness and ductility.