具有有限范围的所有满变换的幺一元的理想

IF 0.5 3区 数学 Q3 MATHEMATICS
Ping Zhao, Huabi Hu
{"title":"具有有限范围的所有满变换的幺一元的理想","authors":"Ping Zhao, Huabi Hu","doi":"10.1142/s0219498825500811","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a non-empty set and let [Formula: see text] be the monoid of all full transformations of [Formula: see text]. Given a non-empty subset [Formula: see text] of [Formula: see text], we denote by [Formula: see text] the subsemigroup of [Formula: see text] of all full transformations with range contained in [Formula: see text] and by [Formula: see text] the monoid of all full transformations of [Formula: see text]. In 2011, Sanwong investigated the subsemigroup [Formula: see text] of [Formula: see text]. For [Formula: see text] is a finite set with [Formula: see text], put [Formula: see text] We characterize the connections between the maximal regular subsemigroups of ideals of [Formula: see text] and the maximal regular subsemigroups of ideals of [Formula: see text]. Moreover, we determine the maximal subsemigroups of [Formula: see text] and classify completely the maximal regular subsemigroups of the ideals [Formula: see text] of [Formula: see text], for [Formula: see text]. We also show that, for [Formula: see text], any maximal regular subsemigroup of [Formula: see text] is idempotent generated.","PeriodicalId":54888,"journal":{"name":"Journal of Algebra and Its Applications","volume":"4 3","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The ideals of the monoid of all full transformations with restricted range\",\"authors\":\"Ping Zhao, Huabi Hu\",\"doi\":\"10.1142/s0219498825500811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be a non-empty set and let [Formula: see text] be the monoid of all full transformations of [Formula: see text]. Given a non-empty subset [Formula: see text] of [Formula: see text], we denote by [Formula: see text] the subsemigroup of [Formula: see text] of all full transformations with range contained in [Formula: see text] and by [Formula: see text] the monoid of all full transformations of [Formula: see text]. In 2011, Sanwong investigated the subsemigroup [Formula: see text] of [Formula: see text]. For [Formula: see text] is a finite set with [Formula: see text], put [Formula: see text] We characterize the connections between the maximal regular subsemigroups of ideals of [Formula: see text] and the maximal regular subsemigroups of ideals of [Formula: see text]. Moreover, we determine the maximal subsemigroups of [Formula: see text] and classify completely the maximal regular subsemigroups of the ideals [Formula: see text] of [Formula: see text], for [Formula: see text]. We also show that, for [Formula: see text], any maximal regular subsemigroup of [Formula: see text] is idempotent generated.\",\"PeriodicalId\":54888,\"journal\":{\"name\":\"Journal of Algebra and Its Applications\",\"volume\":\"4 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219498825500811\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219498825500811","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设[公式:见文]是一个非空集合,设[公式:见文]是[公式:见文]的所有完整变换的幺一元。给定[公式:见文]的一个非空子集[公式:见文],我们用[公式:见文]表示范围包含在[公式:见文]中的所有满变换[公式:见文]的子半群[公式:见文],用[公式:见文]表示[公式:见文]的所有满变换的幺一元。2011年,Sanwong研究了[公式:见文]的子半群[公式:见文]。对于[公式:见文]是具有[公式:见文]的有限集合,我们刻画了[公式:见文]的理想的极大正则子半群与[公式:见文]的理想的极大正则子半群之间的联系。此外,我们确定了[公式:见文]的极大子半群,并对[公式:见文]的理想[公式:见文]的极大正则子半群进行了完全分类。我们还证明,对于[公式:见文],[公式:见文]的任何极大正则子半群都是幂等生成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The ideals of the monoid of all full transformations with restricted range
Let [Formula: see text] be a non-empty set and let [Formula: see text] be the monoid of all full transformations of [Formula: see text]. Given a non-empty subset [Formula: see text] of [Formula: see text], we denote by [Formula: see text] the subsemigroup of [Formula: see text] of all full transformations with range contained in [Formula: see text] and by [Formula: see text] the monoid of all full transformations of [Formula: see text]. In 2011, Sanwong investigated the subsemigroup [Formula: see text] of [Formula: see text]. For [Formula: see text] is a finite set with [Formula: see text], put [Formula: see text] We characterize the connections between the maximal regular subsemigroups of ideals of [Formula: see text] and the maximal regular subsemigroups of ideals of [Formula: see text]. Moreover, we determine the maximal subsemigroups of [Formula: see text] and classify completely the maximal regular subsemigroups of the ideals [Formula: see text] of [Formula: see text], for [Formula: see text]. We also show that, for [Formula: see text], any maximal regular subsemigroup of [Formula: see text] is idempotent generated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
226
审稿时长
4-8 weeks
期刊介绍: The Journal of Algebra and Its Applications will publish papers both on theoretical and on applied aspects of Algebra. There is special interest in papers that point out innovative links between areas of Algebra and fields of application. As the field of Algebra continues to experience tremendous growth and diversification, we intend to provide the mathematical community with a central source for information on both the theoretical and the applied aspects of the discipline. While the journal will be primarily devoted to the publication of original research, extraordinary expository articles that encourage communication between algebraists and experts on areas of application as well as those presenting the state of the art on a given algebraic sub-discipline will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信