用损伤力学模拟控制冰架断裂路径的过程

IF 2.8 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL
Alex Huth, Ravindra Duddu, Benjamin Smith, Olga Sergienko
{"title":"用损伤力学模拟控制冰架断裂路径的过程","authors":"Alex Huth, Ravindra Duddu, Benjamin Smith, Olga Sergienko","doi":"10.1017/jog.2023.71","DOIUrl":null,"url":null,"abstract":"Abstract Rifts are full-thickness fractures that propagate laterally across an ice shelf. They cause ice-shelf weakening and calving of tabular icebergs, and control the initial size of calved icebergs. Here, we present a joint inverse and forward computational modeling framework to capture rifting by combining the vertically integrated momentum balance and anisotropic continuum damage mechanics formulations. We incorporate rift–flank boundary processes to investigate how the rift path is influenced by the pressure on rift–flank walls from seawater, contact between flanks, and ice mélange that may also transmit stress between flanks. To illustrate the viability of the framework, we simulate the final 2 years of rift propagation associated with the calving of tabular iceberg A68 in 2017. We find that the rift path can change with varying ice mélange conditions and the extent of contact between rift flanks. Combinations of parameters associated with slower rift widening rates yield simulated rift paths that best match observations. Our modeling framework lays the foundation for robust simulation of rifting and tabular calving processes, which can enable future studies on ice-sheet–climate interactions, and the effects of ice-shelf buttressing on land ice flow.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":"32 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulating the processes controlling ice-shelf rift paths using damage mechanics\",\"authors\":\"Alex Huth, Ravindra Duddu, Benjamin Smith, Olga Sergienko\",\"doi\":\"10.1017/jog.2023.71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Rifts are full-thickness fractures that propagate laterally across an ice shelf. They cause ice-shelf weakening and calving of tabular icebergs, and control the initial size of calved icebergs. Here, we present a joint inverse and forward computational modeling framework to capture rifting by combining the vertically integrated momentum balance and anisotropic continuum damage mechanics formulations. We incorporate rift–flank boundary processes to investigate how the rift path is influenced by the pressure on rift–flank walls from seawater, contact between flanks, and ice mélange that may also transmit stress between flanks. To illustrate the viability of the framework, we simulate the final 2 years of rift propagation associated with the calving of tabular iceberg A68 in 2017. We find that the rift path can change with varying ice mélange conditions and the extent of contact between rift flanks. Combinations of parameters associated with slower rift widening rates yield simulated rift paths that best match observations. Our modeling framework lays the foundation for robust simulation of rifting and tabular calving processes, which can enable future studies on ice-sheet–climate interactions, and the effects of ice-shelf buttressing on land ice flow.\",\"PeriodicalId\":15981,\"journal\":{\"name\":\"Journal of Glaciology\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Glaciology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jog.2023.71\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Glaciology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jog.2023.71","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

裂缝是沿冰架横向传播的全层裂缝。它们造成冰架的削弱和板状冰山的崩解,并控制崩解冰山的初始大小。在这里,我们提出了一个联合的逆正演计算模型框架,通过结合垂直积分动量平衡和各向异性连续损伤力学公式来捕捉裂谷。我们结合裂谷-翼面边界过程来研究裂谷路径如何受到来自海水的裂谷-翼面壁面压力、侧翼之间的接触以及可能在侧翼之间传递应力的冰的影响。为了说明该框架的可行性,我们模拟了与2017年A68平板冰山崩解相关的最后2年裂缝传播。研究发现,裂谷路径会随着冰缘条件和裂谷两侧接触程度的变化而变化。与较慢的裂谷扩大速率相关的参数组合产生了与观测结果最匹配的模拟裂谷路径。我们的建模框架为裂谷和板状崩解过程的稳健模拟奠定了基础,这可以为未来研究冰盖-气候相互作用以及冰架支撑对陆地冰流的影响奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulating the processes controlling ice-shelf rift paths using damage mechanics
Abstract Rifts are full-thickness fractures that propagate laterally across an ice shelf. They cause ice-shelf weakening and calving of tabular icebergs, and control the initial size of calved icebergs. Here, we present a joint inverse and forward computational modeling framework to capture rifting by combining the vertically integrated momentum balance and anisotropic continuum damage mechanics formulations. We incorporate rift–flank boundary processes to investigate how the rift path is influenced by the pressure on rift–flank walls from seawater, contact between flanks, and ice mélange that may also transmit stress between flanks. To illustrate the viability of the framework, we simulate the final 2 years of rift propagation associated with the calving of tabular iceberg A68 in 2017. We find that the rift path can change with varying ice mélange conditions and the extent of contact between rift flanks. Combinations of parameters associated with slower rift widening rates yield simulated rift paths that best match observations. Our modeling framework lays the foundation for robust simulation of rifting and tabular calving processes, which can enable future studies on ice-sheet–climate interactions, and the effects of ice-shelf buttressing on land ice flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Glaciology
Journal of Glaciology 地学-地球科学综合
CiteScore
5.80
自引率
14.70%
发文量
101
审稿时长
6 months
期刊介绍: Journal of Glaciology publishes original scientific articles and letters in any aspect of glaciology- the study of ice. Studies of natural, artificial, and extraterrestrial ice and snow, as well as interactions between ice, snow and the atmospheric, oceanic and subglacial environment are all eligible. They may be based on field work, remote sensing, laboratory investigations, theoretical analysis or numerical modelling, or may report on newly developed glaciological instruments. Subjects covered recently in the Journal have included palaeoclimatology and the chemistry of the atmosphere as revealed in ice cores; theoretical and applied physics and chemistry of ice; the dynamics of glaciers and ice sheets, and changes in their extent and mass under climatic forcing; glacier energy balances at all scales; glacial landforms, and glaciers as geomorphic agents; snow science in all its aspects; ice as a host for surface and subglacial ecosystems; sea ice, icebergs and lake ice; and avalanche dynamics and other glacial hazards to human activity. Studies of permafrost and of ice in the Earth’s atmosphere are also within the domain of the Journal, as are interdisciplinary applications to engineering, biological, and social sciences, and studies in the history of glaciology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信