{"title":"多层模型下有限总体分布函数的预测","authors":"Sumonkanti Das, Nicola Salvati, Ray Chambers","doi":"10.1177/00080683231190258","DOIUrl":null,"url":null,"abstract":"Chambers and Dunstan proposed a model-based predictor of the population distribution function that makes use of auxiliary population information under a general sampling design. Subsequently, Rao, Kovar, and Mantel proposed design-based ratio and difference predictors of the population distribution function that also use this auxiliary information. Both predictors (CD and RKM) assume a single level model for the target population. In this article we develop predictors of the finite population distribution function for a population that follows a multilevel model. These new predictors use the same smearing approach underpinning the CD predictor. We compare our new predictors with the CD and RKM predictors via design-based simulation, and show that they perform better than these single level predictors when there is significant intra-cluster correlation. The performances of these new two level predictors are also examined via an empirical study based on data from a large-scale UK business survey aimed at estimating the distribution of hourly pay rates. AMS subject classification: Primary 62G30, Secondary 62G32","PeriodicalId":487287,"journal":{"name":"Calcutta Statistical Association Bulletin","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the Finite Population Distribution Function under a Multilevel Model\",\"authors\":\"Sumonkanti Das, Nicola Salvati, Ray Chambers\",\"doi\":\"10.1177/00080683231190258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chambers and Dunstan proposed a model-based predictor of the population distribution function that makes use of auxiliary population information under a general sampling design. Subsequently, Rao, Kovar, and Mantel proposed design-based ratio and difference predictors of the population distribution function that also use this auxiliary information. Both predictors (CD and RKM) assume a single level model for the target population. In this article we develop predictors of the finite population distribution function for a population that follows a multilevel model. These new predictors use the same smearing approach underpinning the CD predictor. We compare our new predictors with the CD and RKM predictors via design-based simulation, and show that they perform better than these single level predictors when there is significant intra-cluster correlation. The performances of these new two level predictors are also examined via an empirical study based on data from a large-scale UK business survey aimed at estimating the distribution of hourly pay rates. AMS subject classification: Primary 62G30, Secondary 62G32\",\"PeriodicalId\":487287,\"journal\":{\"name\":\"Calcutta Statistical Association Bulletin\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calcutta Statistical Association Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00080683231190258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcutta Statistical Association Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00080683231190258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting the Finite Population Distribution Function under a Multilevel Model
Chambers and Dunstan proposed a model-based predictor of the population distribution function that makes use of auxiliary population information under a general sampling design. Subsequently, Rao, Kovar, and Mantel proposed design-based ratio and difference predictors of the population distribution function that also use this auxiliary information. Both predictors (CD and RKM) assume a single level model for the target population. In this article we develop predictors of the finite population distribution function for a population that follows a multilevel model. These new predictors use the same smearing approach underpinning the CD predictor. We compare our new predictors with the CD and RKM predictors via design-based simulation, and show that they perform better than these single level predictors when there is significant intra-cluster correlation. The performances of these new two level predictors are also examined via an empirical study based on data from a large-scale UK business survey aimed at estimating the distribution of hourly pay rates. AMS subject classification: Primary 62G30, Secondary 62G32