活细胞绘画:在高含量筛选中探测细胞生理的新型无毒染料

IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Martin Cottet , Yuniel Fernandez Marrero , Simon Mathien , Karine Audette , Raphaelle Lambert , Eric Bonneil , Kenneth Chng , Alex Campos , David W. Andrews
{"title":"活细胞绘画:在高含量筛选中探测细胞生理的新型无毒染料","authors":"Martin Cottet ,&nbsp;Yuniel Fernandez Marrero ,&nbsp;Simon Mathien ,&nbsp;Karine Audette ,&nbsp;Raphaelle Lambert ,&nbsp;Eric Bonneil ,&nbsp;Kenneth Chng ,&nbsp;Alex Campos ,&nbsp;David W. Andrews","doi":"10.1016/j.slasd.2023.10.005","DOIUrl":null,"url":null,"abstract":"<div><p>High-content imaging approaches, in combination with the use of perturbing agents such as small molecules or CRISPR-driven gene editing, have widely contributed to the identification of new therapeutic compounds. Thanks to recent advances in image-analysis methods, the use of high-content screens is increasingly gaining popularity and thus accelerating the discovery of new therapeutics. However, due to the lack of fully biocompatible fluorescent markers, large-scale high-content screens are mostly performed on fixed cells, which complicates the monitoring of changes in cell physiology over time.</p><p>Here we present a novel fluorescent nontoxic dye that displays intensity and staining pattern changes in response to different physiological states. With multiparametric image analysis, these unique properties allow not only for the detection of distinct phenotypic fingerprints, but also for the quantification of more traditional disease-relevant phenotypes such as apoptosis, autophagy, ER stress and more. Since the dye only gets fluorescent when incorporated into cellular membranes, it is typically used without washing steps, therefore making it ideal to include in automation workflows. In this work, we present ​​relevant data on its biocompatibility and its potential to quantitatively assess subtle cellular phenotypes. Applications such as live kinetic imaging, and live image-based morphological profiling are also discussed. The rich information this fluorescent probe provides facilitates unbiased quantitative phenotypic analysis at larger scale, and ultimately paves the way for more discoveries of new therapeutic agents.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"29 3","pages":"Article 100121"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472555223000758/pdfft?md5=ccc881c71909acf3300308b7a5563890&pid=1-s2.0-S2472555223000758-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Live cell painting: New nontoxic dye to probe cell physiology in high content screening\",\"authors\":\"Martin Cottet ,&nbsp;Yuniel Fernandez Marrero ,&nbsp;Simon Mathien ,&nbsp;Karine Audette ,&nbsp;Raphaelle Lambert ,&nbsp;Eric Bonneil ,&nbsp;Kenneth Chng ,&nbsp;Alex Campos ,&nbsp;David W. Andrews\",\"doi\":\"10.1016/j.slasd.2023.10.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-content imaging approaches, in combination with the use of perturbing agents such as small molecules or CRISPR-driven gene editing, have widely contributed to the identification of new therapeutic compounds. Thanks to recent advances in image-analysis methods, the use of high-content screens is increasingly gaining popularity and thus accelerating the discovery of new therapeutics. However, due to the lack of fully biocompatible fluorescent markers, large-scale high-content screens are mostly performed on fixed cells, which complicates the monitoring of changes in cell physiology over time.</p><p>Here we present a novel fluorescent nontoxic dye that displays intensity and staining pattern changes in response to different physiological states. With multiparametric image analysis, these unique properties allow not only for the detection of distinct phenotypic fingerprints, but also for the quantification of more traditional disease-relevant phenotypes such as apoptosis, autophagy, ER stress and more. Since the dye only gets fluorescent when incorporated into cellular membranes, it is typically used without washing steps, therefore making it ideal to include in automation workflows. In this work, we present ​​relevant data on its biocompatibility and its potential to quantitatively assess subtle cellular phenotypes. Applications such as live kinetic imaging, and live image-based morphological profiling are also discussed. The rich information this fluorescent probe provides facilitates unbiased quantitative phenotypic analysis at larger scale, and ultimately paves the way for more discoveries of new therapeutic agents.</p></div>\",\"PeriodicalId\":21764,\"journal\":{\"name\":\"SLAS Discovery\",\"volume\":\"29 3\",\"pages\":\"Article 100121\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2472555223000758/pdfft?md5=ccc881c71909acf3300308b7a5563890&pid=1-s2.0-S2472555223000758-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Discovery\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2472555223000758\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Discovery","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555223000758","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

高内涵成像方法与小分子或 CRISPR 驱动的基因编辑等扰动剂的使用相结合,为鉴定新的治疗化合物做出了广泛贡献。得益于图像分析方法的最新进展,高内涵筛选的使用日益普及,从而加速了新疗法的发现。然而,由于缺乏完全生物兼容的荧光标记物,大规模的高含量筛选大多是在固定细胞上进行的,这就使监测细胞生理随时间的变化变得复杂。通过多参数图像分析,这些独特的特性不仅能检测不同的表型指纹,还能量化与疾病相关的传统表型,如细胞凋亡、自噬、ER 应激等。由于这种染料只有在进入细胞膜后才会发出荧光,因此使用时通常无需清洗步骤,因此非常适合纳入自动化工作流程。在这项工作中,我们介绍了有关其生物相容性的相关数据及其定量评估细微细胞表型的潜力。此外,还讨论了活体动力学成像和基于活体图像的形态分析等应用。这种荧光探针提供的丰富信息有助于在更大范围内进行无偏见的定量表型分析,最终为发现更多新的治疗药物铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Live cell painting: New nontoxic dye to probe cell physiology in high content screening

High-content imaging approaches, in combination with the use of perturbing agents such as small molecules or CRISPR-driven gene editing, have widely contributed to the identification of new therapeutic compounds. Thanks to recent advances in image-analysis methods, the use of high-content screens is increasingly gaining popularity and thus accelerating the discovery of new therapeutics. However, due to the lack of fully biocompatible fluorescent markers, large-scale high-content screens are mostly performed on fixed cells, which complicates the monitoring of changes in cell physiology over time.

Here we present a novel fluorescent nontoxic dye that displays intensity and staining pattern changes in response to different physiological states. With multiparametric image analysis, these unique properties allow not only for the detection of distinct phenotypic fingerprints, but also for the quantification of more traditional disease-relevant phenotypes such as apoptosis, autophagy, ER stress and more. Since the dye only gets fluorescent when incorporated into cellular membranes, it is typically used without washing steps, therefore making it ideal to include in automation workflows. In this work, we present ​​relevant data on its biocompatibility and its potential to quantitatively assess subtle cellular phenotypes. Applications such as live kinetic imaging, and live image-based morphological profiling are also discussed. The rich information this fluorescent probe provides facilitates unbiased quantitative phenotypic analysis at larger scale, and ultimately paves the way for more discoveries of new therapeutic agents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SLAS Discovery
SLAS Discovery Chemistry-Analytical Chemistry
CiteScore
7.00
自引率
3.20%
发文量
58
审稿时长
39 days
期刊介绍: Advancing Life Sciences R&D: SLAS Discovery reports how scientists develop and utilize novel technologies and/or approaches to provide and characterize chemical and biological tools to understand and treat human disease. SLAS Discovery is a peer-reviewed journal that publishes scientific reports that enable and improve target validation, evaluate current drug discovery technologies, provide novel research tools, and incorporate research approaches that enhance depth of knowledge and drug discovery success. SLAS Discovery emphasizes scientific and technical advances in target identification/validation (including chemical probes, RNA silencing, gene editing technologies); biomarker discovery; assay development; virtual, medium- or high-throughput screening (biochemical and biological, biophysical, phenotypic, toxicological, ADME); lead generation/optimization; chemical biology; and informatics (data analysis, image analysis, statistics, bio- and chemo-informatics). Review articles on target biology, new paradigms in drug discovery and advances in drug discovery technologies. SLAS Discovery is of particular interest to those involved in analytical chemistry, applied microbiology, automation, biochemistry, bioengineering, biomedical optics, biotechnology, bioinformatics, cell biology, DNA science and technology, genetics, information technology, medicinal chemistry, molecular biology, natural products chemistry, organic chemistry, pharmacology, spectroscopy, and toxicology. SLAS Discovery is a member of the Committee on Publication Ethics (COPE) and was published previously (1996-2016) as the Journal of Biomolecular Screening (JBS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信