{"title":"论具有终端收益的决斗的纳什均衡","authors":"Athanasios Kehagias","doi":"10.3390/g14050062","DOIUrl":null,"url":null,"abstract":"We formulate and study a two-player duel game as a terminal payoffs stochastic game. Players P1,P2 are standing in place and, in every turn, each may shoot at the other (in other words, abstention is allowed). If Pn shoots Pm (m≠n), either they hit and kill them (with probability pn) or they miss and Pm is unaffected (with probability 1−pn). The process continues until at least one player dies; if no player ever dies, the game lasts an infinite number of turns. Each player receives a positive payoff upon killing their opponent and a negative payoff upon being killed. We show that the unique stationary equilibrium is for both players to always shoot at each other. In addition, we show that the game also possesses “cooperative” (i.e., non-shooting) non-stationary equilibria. We also discuss a certain similarity that the duel has to the iterated Prisoner’s Dilemma.","PeriodicalId":35065,"journal":{"name":"Games","volume":"13 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Nash Equilibria of a Duel with Terminal Payoffs\",\"authors\":\"Athanasios Kehagias\",\"doi\":\"10.3390/g14050062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We formulate and study a two-player duel game as a terminal payoffs stochastic game. Players P1,P2 are standing in place and, in every turn, each may shoot at the other (in other words, abstention is allowed). If Pn shoots Pm (m≠n), either they hit and kill them (with probability pn) or they miss and Pm is unaffected (with probability 1−pn). The process continues until at least one player dies; if no player ever dies, the game lasts an infinite number of turns. Each player receives a positive payoff upon killing their opponent and a negative payoff upon being killed. We show that the unique stationary equilibrium is for both players to always shoot at each other. In addition, we show that the game also possesses “cooperative” (i.e., non-shooting) non-stationary equilibria. We also discuss a certain similarity that the duel has to the iterated Prisoner’s Dilemma.\",\"PeriodicalId\":35065,\"journal\":{\"name\":\"Games\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/g14050062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/g14050062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
On the Nash Equilibria of a Duel with Terminal Payoffs
We formulate and study a two-player duel game as a terminal payoffs stochastic game. Players P1,P2 are standing in place and, in every turn, each may shoot at the other (in other words, abstention is allowed). If Pn shoots Pm (m≠n), either they hit and kill them (with probability pn) or they miss and Pm is unaffected (with probability 1−pn). The process continues until at least one player dies; if no player ever dies, the game lasts an infinite number of turns. Each player receives a positive payoff upon killing their opponent and a negative payoff upon being killed. We show that the unique stationary equilibrium is for both players to always shoot at each other. In addition, we show that the game also possesses “cooperative” (i.e., non-shooting) non-stationary equilibria. We also discuss a certain similarity that the duel has to the iterated Prisoner’s Dilemma.
GamesDecision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.60
自引率
11.10%
发文量
65
审稿时长
11 weeks
期刊介绍:
Games (ISSN 2073-4336) is an international, peer-reviewed, quick-refereeing open access journal (free for readers), which provides an advanced forum for studies related to strategic interaction, game theory and its applications, and decision making. The aim is to provide an interdisciplinary forum for all behavioral sciences and related fields, including economics, psychology, political science, mathematics, computer science, and biology (including animal behavior). To guarantee a rapid refereeing and editorial process, Games follows standard publication practices in the natural sciences.