一种提高硬质合金涂层刀具切削性能的电磁耦合处理方法

IF 2.2 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Kaien Sun, Bo Zeng, Yi Qin, Chengjun Deng, Yi Yang, Kunlan Huang, Jie Wang
{"title":"一种提高硬质合金涂层刀具切削性能的电磁耦合处理方法","authors":"Kaien Sun, Bo Zeng, Yi Qin, Chengjun Deng, Yi Yang, Kunlan Huang, Jie Wang","doi":"10.1080/21870764.2023.2259544","DOIUrl":null,"url":null,"abstract":"To improve the cutting performance and prolong the service life of a carbide-coated tool in the process of ductile iron machining, an electromagnetic coupling treatment (EMCT) was carried out. The cutting experiments show that the cutting force and cutting temperature are reduced after EMCT, and the roughness of the machined surface is reduced. It is found that after EMCT with optimal parameters the dislocation density, microscopic strain, microhardness and bonding strength of an alumina coating increase by 109.2%, 28.2%, 28.3% and 26.6%, respectively. Using the actual machining of a differential housing to verify the tool life, it is found that after EMCT, a single tool can process 18.4 more workpieces or in other words, the tool life increased by 44%. EMCT can promote element diffusion, optimize coating properties and have great potential in coating tool life extension.","PeriodicalId":15130,"journal":{"name":"Journal of Asian Ceramic Societies","volume":"36 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An electromagnetic coupling treatment for improving the cutting performance of cemented carbide-coated tools\",\"authors\":\"Kaien Sun, Bo Zeng, Yi Qin, Chengjun Deng, Yi Yang, Kunlan Huang, Jie Wang\",\"doi\":\"10.1080/21870764.2023.2259544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the cutting performance and prolong the service life of a carbide-coated tool in the process of ductile iron machining, an electromagnetic coupling treatment (EMCT) was carried out. The cutting experiments show that the cutting force and cutting temperature are reduced after EMCT, and the roughness of the machined surface is reduced. It is found that after EMCT with optimal parameters the dislocation density, microscopic strain, microhardness and bonding strength of an alumina coating increase by 109.2%, 28.2%, 28.3% and 26.6%, respectively. Using the actual machining of a differential housing to verify the tool life, it is found that after EMCT, a single tool can process 18.4 more workpieces or in other words, the tool life increased by 44%. EMCT can promote element diffusion, optimize coating properties and have great potential in coating tool life extension.\",\"PeriodicalId\":15130,\"journal\":{\"name\":\"Journal of Asian Ceramic Societies\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Asian Ceramic Societies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21870764.2023.2259544\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Ceramic Societies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21870764.2023.2259544","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

为了提高球墨铸铁加工过程中硬质合金涂层刀具的切削性能和延长刀具的使用寿命,对其进行了电磁耦合处理。切削实验表明,EMCT减小了切削力和切削温度,降低了加工表面的粗糙度。结果表明,经最佳参数EMCT处理后,氧化铝涂层的位错密度、显微应变、显微硬度和结合强度分别提高了109.2%、28.2%、28.3%和26.6%。利用实际加工差动壳对刀具寿命进行验证,发现EMCT后单刀可多加工18.4个工件,换句话说,刀具寿命提高44%。EMCT可以促进元素扩散,优化涂层性能,在延长涂层刀具寿命方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An electromagnetic coupling treatment for improving the cutting performance of cemented carbide-coated tools
To improve the cutting performance and prolong the service life of a carbide-coated tool in the process of ductile iron machining, an electromagnetic coupling treatment (EMCT) was carried out. The cutting experiments show that the cutting force and cutting temperature are reduced after EMCT, and the roughness of the machined surface is reduced. It is found that after EMCT with optimal parameters the dislocation density, microscopic strain, microhardness and bonding strength of an alumina coating increase by 109.2%, 28.2%, 28.3% and 26.6%, respectively. Using the actual machining of a differential housing to verify the tool life, it is found that after EMCT, a single tool can process 18.4 more workpieces or in other words, the tool life increased by 44%. EMCT can promote element diffusion, optimize coating properties and have great potential in coating tool life extension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Asian Ceramic Societies
Journal of Asian Ceramic Societies Materials Science-Ceramics and Composites
CiteScore
5.00
自引率
4.30%
发文量
78
审稿时长
10 weeks
期刊介绍: The Journal of Asian Ceramic Societies is an open access journal publishing papers documenting original research and reviews covering all aspects of science and technology of Ceramics, Glasses, Composites, and related materials. These papers include experimental and theoretical aspects emphasizing basic science, processing, microstructure, characteristics, and functionality of ceramic materials. The journal publishes high quality full papers, letters for rapid publication, and in-depth review articles. All papers are subjected to a fair peer-review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信