{"title":"从数据中学习模型","authors":"Carlos Cabrelli, Ursula Molter","doi":"10.33044/revuma.4371","DOIUrl":null,"url":null,"abstract":". The task of approximating data with a concise model comprising only a few parameters is a key concern in many applications, particularly in signal processing. These models, typically subspaces belonging to a specific class, are carefully chosen based on the data at hand. In this survey, we review the latest research on data approximation using models with few parameters, with a specific emphasis on scenarios where the data is situated in finite-dimensional vector spaces, functional spaces such as L 2 ( R d ), and other general situations. We highlight the invariant properties of these subspace-based models that make them suitable for diverse applications, particularly in the field of image processing.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning the model from the data\",\"authors\":\"Carlos Cabrelli, Ursula Molter\",\"doi\":\"10.33044/revuma.4371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The task of approximating data with a concise model comprising only a few parameters is a key concern in many applications, particularly in signal processing. These models, typically subspaces belonging to a specific class, are carefully chosen based on the data at hand. In this survey, we review the latest research on data approximation using models with few parameters, with a specific emphasis on scenarios where the data is situated in finite-dimensional vector spaces, functional spaces such as L 2 ( R d ), and other general situations. We highlight the invariant properties of these subspace-based models that make them suitable for diverse applications, particularly in the field of image processing.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33044/revuma.4371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33044/revuma.4371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
. The task of approximating data with a concise model comprising only a few parameters is a key concern in many applications, particularly in signal processing. These models, typically subspaces belonging to a specific class, are carefully chosen based on the data at hand. In this survey, we review the latest research on data approximation using models with few parameters, with a specific emphasis on scenarios where the data is situated in finite-dimensional vector spaces, functional spaces such as L 2 ( R d ), and other general situations. We highlight the invariant properties of these subspace-based models that make them suitable for diverse applications, particularly in the field of image processing.