{"title":"Hermite型算子分数次幂的点收敛性","authors":"Guillermo Flores, Gustavo Garrigós, Teresa Signes, Beatriz Viviani","doi":"10.33044/revuma.4357","DOIUrl":null,"url":null,"abstract":"When $L$ is the Hermite or the Ornstein-Uhlenbeck operator, we find minimal integrability and smoothness conditions on a function $f$ so that the fractional power $L^\\sigma f(x_0)$ is well-defined at a given point $x_0$. We illustrate the optimality of the conditions with various examples. Finally, we obtain similar results for the fractional operators $(-\\Delta+R)^\\sigma$, with $R>0$.","PeriodicalId":54469,"journal":{"name":"Revista De La Union Matematica Argentina","volume":"38 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pointwise convergence of fractional powers of Hermite type operators\",\"authors\":\"Guillermo Flores, Gustavo Garrigós, Teresa Signes, Beatriz Viviani\",\"doi\":\"10.33044/revuma.4357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When $L$ is the Hermite or the Ornstein-Uhlenbeck operator, we find minimal integrability and smoothness conditions on a function $f$ so that the fractional power $L^\\\\sigma f(x_0)$ is well-defined at a given point $x_0$. We illustrate the optimality of the conditions with various examples. Finally, we obtain similar results for the fractional operators $(-\\\\Delta+R)^\\\\sigma$, with $R>0$.\",\"PeriodicalId\":54469,\"journal\":{\"name\":\"Revista De La Union Matematica Argentina\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista De La Union Matematica Argentina\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33044/revuma.4357\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Union Matematica Argentina","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33044/revuma.4357","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Pointwise convergence of fractional powers of Hermite type operators
When $L$ is the Hermite or the Ornstein-Uhlenbeck operator, we find minimal integrability and smoothness conditions on a function $f$ so that the fractional power $L^\sigma f(x_0)$ is well-defined at a given point $x_0$. We illustrate the optimality of the conditions with various examples. Finally, we obtain similar results for the fractional operators $(-\Delta+R)^\sigma$, with $R>0$.
期刊介绍:
Revista de la Unión Matemática Argentina is an open access journal, free of charge for both authors and readers. We publish original research articles in all areas of pure and applied mathematics.