{"title":"使用不同改造策略的基础设施管理的全生命周期成本弹性优化框架","authors":"Pedram Omidian, Naser Khaji","doi":"10.1080/23789689.2023.2257516","DOIUrl":null,"url":null,"abstract":"ABSTRACTEach of the total Life-Cycle Cost (LCC) and resilience index are valuable indicators of infrastructure management against hazard events during its service lifetime. In this study, the proposed multi-objective framework provides a systematic methodology for decision-makers to select the optimal retrofit strategies that minimize the LCC while satisfying a given level of resilience, for which various retrofit strategies are chosen. For each case, the fragility curves are established through IDA for calculating the resilience and LCC, which incorporates the effects of complete or incomplete repair actions of damage conditions induced by multiple occurrences of previous hazard events. This study employs a well-known ‘NSGA II’ to identify the optimal set of solutions. The various aspects of the optimal retrofit strategies are thoroughly investigated and discussed for an actual structure in the refinery sites as a case study infrastructure.KEYWORDS: Life-cycle costresiliencemulti-objective optimization frameworkretrofit strategiesinfrastructures management AcknowledgmentsThe authors would like to sincerely appreciate anonymous reviewers for the careful reading, insightful suggestions, and comments contributed to their paper.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationNotes on contributorsPedram OmidianPedram Omidian is a doctoral student in Earthquake Engineering at Tarbiat Modares University. His research interests include life-cycle cost, resilience, and hazard management.Naser KhajiProf. Naser Khaji is the Principal Investigator of the Infrastructure Management laboratory at Hiroshima University. His research interests include health monitoring of various infrastructures, soil-structure-fluid interaction, computational structural dynamics and seismic wave propagation, inverse problems in structural dynamics and earthquake engineering, numerical methods in computational mechanics, and seismic hazard analysis.","PeriodicalId":45395,"journal":{"name":"Sustainable and Resilient Infrastructure","volume":"39 1","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A total life-cycle cost–resilience optimization framework for infrastructures management using different retrofit strategies\",\"authors\":\"Pedram Omidian, Naser Khaji\",\"doi\":\"10.1080/23789689.2023.2257516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTEach of the total Life-Cycle Cost (LCC) and resilience index are valuable indicators of infrastructure management against hazard events during its service lifetime. In this study, the proposed multi-objective framework provides a systematic methodology for decision-makers to select the optimal retrofit strategies that minimize the LCC while satisfying a given level of resilience, for which various retrofit strategies are chosen. For each case, the fragility curves are established through IDA for calculating the resilience and LCC, which incorporates the effects of complete or incomplete repair actions of damage conditions induced by multiple occurrences of previous hazard events. This study employs a well-known ‘NSGA II’ to identify the optimal set of solutions. The various aspects of the optimal retrofit strategies are thoroughly investigated and discussed for an actual structure in the refinery sites as a case study infrastructure.KEYWORDS: Life-cycle costresiliencemulti-objective optimization frameworkretrofit strategiesinfrastructures management AcknowledgmentsThe authors would like to sincerely appreciate anonymous reviewers for the careful reading, insightful suggestions, and comments contributed to their paper.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationNotes on contributorsPedram OmidianPedram Omidian is a doctoral student in Earthquake Engineering at Tarbiat Modares University. His research interests include life-cycle cost, resilience, and hazard management.Naser KhajiProf. Naser Khaji is the Principal Investigator of the Infrastructure Management laboratory at Hiroshima University. His research interests include health monitoring of various infrastructures, soil-structure-fluid interaction, computational structural dynamics and seismic wave propagation, inverse problems in structural dynamics and earthquake engineering, numerical methods in computational mechanics, and seismic hazard analysis.\",\"PeriodicalId\":45395,\"journal\":{\"name\":\"Sustainable and Resilient Infrastructure\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable and Resilient Infrastructure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23789689.2023.2257516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable and Resilient Infrastructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23789689.2023.2257516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
A total life-cycle cost–resilience optimization framework for infrastructures management using different retrofit strategies
ABSTRACTEach of the total Life-Cycle Cost (LCC) and resilience index are valuable indicators of infrastructure management against hazard events during its service lifetime. In this study, the proposed multi-objective framework provides a systematic methodology for decision-makers to select the optimal retrofit strategies that minimize the LCC while satisfying a given level of resilience, for which various retrofit strategies are chosen. For each case, the fragility curves are established through IDA for calculating the resilience and LCC, which incorporates the effects of complete or incomplete repair actions of damage conditions induced by multiple occurrences of previous hazard events. This study employs a well-known ‘NSGA II’ to identify the optimal set of solutions. The various aspects of the optimal retrofit strategies are thoroughly investigated and discussed for an actual structure in the refinery sites as a case study infrastructure.KEYWORDS: Life-cycle costresiliencemulti-objective optimization frameworkretrofit strategiesinfrastructures management AcknowledgmentsThe authors would like to sincerely appreciate anonymous reviewers for the careful reading, insightful suggestions, and comments contributed to their paper.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationNotes on contributorsPedram OmidianPedram Omidian is a doctoral student in Earthquake Engineering at Tarbiat Modares University. His research interests include life-cycle cost, resilience, and hazard management.Naser KhajiProf. Naser Khaji is the Principal Investigator of the Infrastructure Management laboratory at Hiroshima University. His research interests include health monitoring of various infrastructures, soil-structure-fluid interaction, computational structural dynamics and seismic wave propagation, inverse problems in structural dynamics and earthquake engineering, numerical methods in computational mechanics, and seismic hazard analysis.
期刊介绍:
Sustainable and Resilient Infrastructure is an interdisciplinary journal that focuses on the sustainable development of resilient communities.
Sustainability is defined in relation to the ability of infrastructure to address the needs of the present without sacrificing the ability of future generations to meet their needs. Resilience is considered in relation to both natural hazards (like earthquakes, tsunami, hurricanes, cyclones, tornado, flooding and drought) and anthropogenic hazards (like human errors and malevolent attacks.) Resilience is taken to depend both on the performance of the built and modified natural environment and on the contextual characteristics of social, economic and political institutions. Sustainability and resilience are considered both for physical and non-physical infrastructure.