复杂环境下斯坦定理的化身

Pub Date : 2023-09-21 DOI:10.33044/revuma.4361
Aline Bonami, Sandrine Grellier, Benoît Sehba
{"title":"复杂环境下斯坦定理的化身","authors":"Aline Bonami, Sandrine Grellier, Benoît Sehba","doi":"10.33044/revuma.4361","DOIUrl":null,"url":null,"abstract":". In this paper, we establish some variants of Stein’s theorem, which states that a non-negative function belongs to the Hardy space H 1 ( T ) if and only if it belongs to L log L ( T ). We consider Bergman spaces of holomorphic functions in the upper half plane and develop avatars of Stein’s theorem and relative results in this context. We are led to consider weighted Bergman spaces and Bergman spaces of Musielak–Orlicz type. Eventually, we characterize bounded Hankel operators on A 1 ( C + ).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Avatars of Stein's theorem in the complex setting\",\"authors\":\"Aline Bonami, Sandrine Grellier, Benoît Sehba\",\"doi\":\"10.33044/revuma.4361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we establish some variants of Stein’s theorem, which states that a non-negative function belongs to the Hardy space H 1 ( T ) if and only if it belongs to L log L ( T ). We consider Bergman spaces of holomorphic functions in the upper half plane and develop avatars of Stein’s theorem and relative results in this context. We are led to consider weighted Bergman spaces and Bergman spaces of Musielak–Orlicz type. Eventually, we characterize bounded Hankel operators on A 1 ( C + ).\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33044/revuma.4361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33044/revuma.4361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Avatars of Stein's theorem in the complex setting
. In this paper, we establish some variants of Stein’s theorem, which states that a non-negative function belongs to the Hardy space H 1 ( T ) if and only if it belongs to L log L ( T ). We consider Bergman spaces of holomorphic functions in the upper half plane and develop avatars of Stein’s theorem and relative results in this context. We are led to consider weighted Bergman spaces and Bergman spaces of Musielak–Orlicz type. Eventually, we characterize bounded Hankel operators on A 1 ( C + ).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信