希腊几何学中的理想化

Justin Humphreys
{"title":"希腊几何学中的理想化","authors":"Justin Humphreys","doi":"10.3366/anph.2023.0095","DOIUrl":null,"url":null,"abstract":"Some philosophers hold that mathematics depends on idealising assumptions. While these thinkers typically emphasise the role of idealisation in set theory, Edmund Husserl argues that idealisation is constitutive of the early Greek geometry that is codified by Euclid. This paper takes up Husserl's idea by investigating three major developments of Greek geometry: Thalean analogical idealisation, Hippocratean dynamic idealisation, and Archimedean mechanical idealisation. I argue that these idealisations are not, as Husserl held, primarily a matter of ‘smoothing out’ sensory reality to produce ideal, ‘perfect’ figures. Rather, Greek geometry depends on assuming some falsehoods – equidistance from a source of illumination, a perfectly unwavering hand, or a machine that weights abstract objects – in order to make complex problems tractable. Although these idealisations were rarely discussed explicitly in antiquity, they can be systematically reconstructed from our extant sources.","PeriodicalId":222223,"journal":{"name":"Ancient Philosophy Today","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Idealisation in Greek Geometry\",\"authors\":\"Justin Humphreys\",\"doi\":\"10.3366/anph.2023.0095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some philosophers hold that mathematics depends on idealising assumptions. While these thinkers typically emphasise the role of idealisation in set theory, Edmund Husserl argues that idealisation is constitutive of the early Greek geometry that is codified by Euclid. This paper takes up Husserl's idea by investigating three major developments of Greek geometry: Thalean analogical idealisation, Hippocratean dynamic idealisation, and Archimedean mechanical idealisation. I argue that these idealisations are not, as Husserl held, primarily a matter of ‘smoothing out’ sensory reality to produce ideal, ‘perfect’ figures. Rather, Greek geometry depends on assuming some falsehoods – equidistance from a source of illumination, a perfectly unwavering hand, or a machine that weights abstract objects – in order to make complex problems tractable. Although these idealisations were rarely discussed explicitly in antiquity, they can be systematically reconstructed from our extant sources.\",\"PeriodicalId\":222223,\"journal\":{\"name\":\"Ancient Philosophy Today\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ancient Philosophy Today\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3366/anph.2023.0095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ancient Philosophy Today","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3366/anph.2023.0095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一些哲学家认为数学依赖于理想化的假设。虽然这些思想家通常强调理想化在集合论中的作用,但埃德蒙·胡塞尔认为理想化是欧几里得编纂的早期希腊几何的组成部分。本文通过考察希腊几何学的三个主要发展来继承胡塞尔的思想:泰勒斯的类比理想化、希波克拉底的动态理想化和阿基米德的机械理想化。我认为,这些理想化并不像胡塞尔所认为的那样,主要是为了“抹平”感官现实,以产生理想的、“完美的”形象。相反,希腊几何依赖于假设一些谬误——与光源的距离相等,一只完全不摆动的手,或者一台为抽象物体称重的机器——以便使复杂的问题变得容易处理。虽然这些理想化在古代很少被明确地讨论,但它们可以从我们现存的资料中系统地重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Idealisation in Greek Geometry
Some philosophers hold that mathematics depends on idealising assumptions. While these thinkers typically emphasise the role of idealisation in set theory, Edmund Husserl argues that idealisation is constitutive of the early Greek geometry that is codified by Euclid. This paper takes up Husserl's idea by investigating three major developments of Greek geometry: Thalean analogical idealisation, Hippocratean dynamic idealisation, and Archimedean mechanical idealisation. I argue that these idealisations are not, as Husserl held, primarily a matter of ‘smoothing out’ sensory reality to produce ideal, ‘perfect’ figures. Rather, Greek geometry depends on assuming some falsehoods – equidistance from a source of illumination, a perfectly unwavering hand, or a machine that weights abstract objects – in order to make complex problems tractable. Although these idealisations were rarely discussed explicitly in antiquity, they can be systematically reconstructed from our extant sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信