{"title":"这一切都在名字里:一种基于人物的方法来推断宗教","authors":"Rochana Chaturvedi, Sugat Chaturvedi","doi":"10.1017/pan.2023.6","DOIUrl":null,"url":null,"abstract":"Abstract Large-scale microdata on group identity are critical for studies on identity politics and violence but remain largely unavailable for developing countries. We use personal names to infer religion in South Asia—where religion is a salient social division, and yet, disaggregated data on it are scarce. Existing work predicts religion using a dictionary-based method and, therefore, cannot classify unseen names. We provide character-based machine-learning models that can classify unseen names too with high accuracy. Our models are also much faster and, hence, scalable to large datasets. We explain the classification decisions of one of our models using the layer-wise relevance propagation technique. The character patterns learned by the classifier are rooted in the linguistic origins of names. We apply these to infer the religion of electoral candidates using historical data on Indian elections and observe a trend of declining Muslim representation. Our approach can be used to detect identity groups across the world for whom the underlying names might have different linguistic roots.","PeriodicalId":48270,"journal":{"name":"Political Analysis","volume":"49 1","pages":"0"},"PeriodicalIF":4.7000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"It’s All in the Name: A Character-Based Approach to Infer Religion\",\"authors\":\"Rochana Chaturvedi, Sugat Chaturvedi\",\"doi\":\"10.1017/pan.2023.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Large-scale microdata on group identity are critical for studies on identity politics and violence but remain largely unavailable for developing countries. We use personal names to infer religion in South Asia—where religion is a salient social division, and yet, disaggregated data on it are scarce. Existing work predicts religion using a dictionary-based method and, therefore, cannot classify unseen names. We provide character-based machine-learning models that can classify unseen names too with high accuracy. Our models are also much faster and, hence, scalable to large datasets. We explain the classification decisions of one of our models using the layer-wise relevance propagation technique. The character patterns learned by the classifier are rooted in the linguistic origins of names. We apply these to infer the religion of electoral candidates using historical data on Indian elections and observe a trend of declining Muslim representation. Our approach can be used to detect identity groups across the world for whom the underlying names might have different linguistic roots.\",\"PeriodicalId\":48270,\"journal\":{\"name\":\"Political Analysis\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Political Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/pan.2023.6\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLITICAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Political Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/pan.2023.6","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLITICAL SCIENCE","Score":null,"Total":0}
It’s All in the Name: A Character-Based Approach to Infer Religion
Abstract Large-scale microdata on group identity are critical for studies on identity politics and violence but remain largely unavailable for developing countries. We use personal names to infer religion in South Asia—where religion is a salient social division, and yet, disaggregated data on it are scarce. Existing work predicts religion using a dictionary-based method and, therefore, cannot classify unseen names. We provide character-based machine-learning models that can classify unseen names too with high accuracy. Our models are also much faster and, hence, scalable to large datasets. We explain the classification decisions of one of our models using the layer-wise relevance propagation technique. The character patterns learned by the classifier are rooted in the linguistic origins of names. We apply these to infer the religion of electoral candidates using historical data on Indian elections and observe a trend of declining Muslim representation. Our approach can be used to detect identity groups across the world for whom the underlying names might have different linguistic roots.
期刊介绍:
Political Analysis chronicles these exciting developments by publishing the most sophisticated scholarship in the field. It is the place to learn new methods, to find some of the best empirical scholarship, and to publish your best research.