n点曲线上枚举线性级数的广义RSK

Q3 Mathematics
Maria Gillespie, Andrew Reimer-Berg
{"title":"n点曲线上枚举线性级数的广义RSK","authors":"Maria Gillespie, Andrew Reimer-Berg","doi":"10.5802/alco.250","DOIUrl":null,"url":null,"abstract":"We give a combinatorial proof of a recent geometric result of Farkas and Lian on linear series on curves with prescribed incidence conditions. The result states that the expected number of degree-d morphisms from a general genus g, n-marked curve C to ℙ r , sending the marked points on C to specified general points in ℙ r , is equal to (r+1) g for sufficiently large d. This computation may be rephrased as an intersection problem on Grassmannians, which has a natural combinatorial interpretation in terms of Young tableaux by the classical Littlewood-Richardson rule. We give a bijection, generalizing the well-known RSK correspondence, between the tableaux in question and the (r+1)-ary sequences of length g, and we explore our bijection’s combinatorial properties.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":"258 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Generalized RSK for Enumerating Linear Series on n-pointed Curves\",\"authors\":\"Maria Gillespie, Andrew Reimer-Berg\",\"doi\":\"10.5802/alco.250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a combinatorial proof of a recent geometric result of Farkas and Lian on linear series on curves with prescribed incidence conditions. The result states that the expected number of degree-d morphisms from a general genus g, n-marked curve C to ℙ r , sending the marked points on C to specified general points in ℙ r , is equal to (r+1) g for sufficiently large d. This computation may be rephrased as an intersection problem on Grassmannians, which has a natural combinatorial interpretation in terms of Young tableaux by the classical Littlewood-Richardson rule. We give a bijection, generalizing the well-known RSK correspondence, between the tableaux in question and the (r+1)-ary sequences of length g, and we explore our bijection’s combinatorial properties.\",\"PeriodicalId\":36046,\"journal\":{\"name\":\"Algebraic Combinatorics\",\"volume\":\"258 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

本文给出了Farkas和Lian关于给定入射条件曲线上线性级数的一个最近的几何结果的组合证明。结果表明,对于足够大的d,从一般属g, n标记曲线C到r,将C上的标记点发送到r中指定的一般点的次态射的期望数等于(r+1) g。这种计算可以被重新表述为Grassmannians上的交集问题,它根据经典的Littlewood-Richardson规则在Young表方面具有自然的组合解释。我们给出了一个双射,推广了所讨论的表与长度为g的(r+1)任意序列之间众所周知的RSK对应关系,并探索了我们的双射的组合性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Generalized RSK for Enumerating Linear Series on n-pointed Curves
We give a combinatorial proof of a recent geometric result of Farkas and Lian on linear series on curves with prescribed incidence conditions. The result states that the expected number of degree-d morphisms from a general genus g, n-marked curve C to ℙ r , sending the marked points on C to specified general points in ℙ r , is equal to (r+1) g for sufficiently large d. This computation may be rephrased as an intersection problem on Grassmannians, which has a natural combinatorial interpretation in terms of Young tableaux by the classical Littlewood-Richardson rule. We give a bijection, generalizing the well-known RSK correspondence, between the tableaux in question and the (r+1)-ary sequences of length g, and we explore our bijection’s combinatorial properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信