Soulayma Hassan, Tien Ngo, Leadin S. Khudur, Christian Krohn, Charles Chinyere Dike, Ibrahim Gbolahan Hakeem, Kalpit Shah, Aravind Surapaneni, Andrew S. Ball
{"title":"生物固体衍生的生物炭提高了鸡粪厌氧消化过程中生物甲烷的产量","authors":"Soulayma Hassan, Tien Ngo, Leadin S. Khudur, Christian Krohn, Charles Chinyere Dike, Ibrahim Gbolahan Hakeem, Kalpit Shah, Aravind Surapaneni, Andrew S. Ball","doi":"10.3390/resources12100123","DOIUrl":null,"url":null,"abstract":"Anaerobic digestion has attracted great interest for use in the management of organic wastes and the production of biomethane. However, this process is facing challenges, such as a high concentration of ammonia nitrogen, which affects the methanogenesis process and, thus, the production of methane. This study investigates the use of biosolid-derived biochar for mitigating ammonia stress and improving methane production during the anaerobic digestion of chicken manure, using both pristine biochar and biochar modified with a potassium hydroxide (KOH) solution. Batch mesophilic anaerobic digestion (37 °C) was carried out over 18 days. When compared to chicken-manure-only controls, a significant increase in methane formation was observed in the digesters amended with biochar and KOH-modified biochar, producing 220 L kg−1 volatile solids (VSs) and 262 L kg−1 VSs of methane, respectively, compared to 139 L kg−1 VSs from the control digesters. The use of biochar and KOH-modified biochar resulted in a significant reduction of 8 days in the lag phase. The total ammonia nitrogen (TAN) concentration was reduced in the digesters with biochar and KOH-modified biochar by 25% and 35.5%, respectively. The quantitative polymerase chain reaction (QPCR) data revealed that the number of 16S rRNA gene copies was around 50,000 and 41,000 times higher in the biochar and KOH-modified biochar digesters, respectively, compared to the control digesters on day 18. The taxonomic profiles indicated that the BC and KOH-BC digesters contained a mixture of methanogenic pathways, including acetoclastic (Methanosaetaceae), hydrogenotrophic (Methanosarcinaceae), and methylation (Methanofastidiosaceae). This mix of pathways suggests a more robust archaeal community and, hence, more efficient methanogenesis. The results show that the addition of biosolids biochar enhances anaerobic digestion, mitigates ammonia stress to methanogens, and significantly increases biogas production.","PeriodicalId":37723,"journal":{"name":"Resources","volume":"11 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biosolids-Derived Biochar Improves Biomethane Production in the Anaerobic Digestion of Chicken Manure\",\"authors\":\"Soulayma Hassan, Tien Ngo, Leadin S. Khudur, Christian Krohn, Charles Chinyere Dike, Ibrahim Gbolahan Hakeem, Kalpit Shah, Aravind Surapaneni, Andrew S. Ball\",\"doi\":\"10.3390/resources12100123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anaerobic digestion has attracted great interest for use in the management of organic wastes and the production of biomethane. However, this process is facing challenges, such as a high concentration of ammonia nitrogen, which affects the methanogenesis process and, thus, the production of methane. This study investigates the use of biosolid-derived biochar for mitigating ammonia stress and improving methane production during the anaerobic digestion of chicken manure, using both pristine biochar and biochar modified with a potassium hydroxide (KOH) solution. Batch mesophilic anaerobic digestion (37 °C) was carried out over 18 days. When compared to chicken-manure-only controls, a significant increase in methane formation was observed in the digesters amended with biochar and KOH-modified biochar, producing 220 L kg−1 volatile solids (VSs) and 262 L kg−1 VSs of methane, respectively, compared to 139 L kg−1 VSs from the control digesters. The use of biochar and KOH-modified biochar resulted in a significant reduction of 8 days in the lag phase. The total ammonia nitrogen (TAN) concentration was reduced in the digesters with biochar and KOH-modified biochar by 25% and 35.5%, respectively. The quantitative polymerase chain reaction (QPCR) data revealed that the number of 16S rRNA gene copies was around 50,000 and 41,000 times higher in the biochar and KOH-modified biochar digesters, respectively, compared to the control digesters on day 18. The taxonomic profiles indicated that the BC and KOH-BC digesters contained a mixture of methanogenic pathways, including acetoclastic (Methanosaetaceae), hydrogenotrophic (Methanosarcinaceae), and methylation (Methanofastidiosaceae). This mix of pathways suggests a more robust archaeal community and, hence, more efficient methanogenesis. The results show that the addition of biosolids biochar enhances anaerobic digestion, mitigates ammonia stress to methanogens, and significantly increases biogas production.\",\"PeriodicalId\":37723,\"journal\":{\"name\":\"Resources\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/resources12100123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/resources12100123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
厌氧消化在有机废物管理和生物甲烷生产方面的应用引起了人们的极大兴趣。然而,这一过程面临着挑战,例如高浓度的氨氮,这影响了甲烷生成过程,从而影响了甲烷的产生。本研究研究了生物固体来源的生物炭在鸡粪厌氧消化过程中缓解氨应激和提高甲烷产量的作用,使用原始生物炭和氢氧化钾(KOH)溶液改性的生物炭。分批中温厌氧消化(37°C)进行了18天。与只使用鸡粪的对照相比,生物炭和koh改性生物炭的沼气池甲烷生成量显著增加,分别产生220 L kg - 1挥发性固体(VSs)和262 L kg - 1甲烷,而对照沼气池的挥发性固体(VSs)为139 L kg - 1。使用生物炭和koh改性生物炭可显著减少8天的滞后期。生物炭和koh改性生物炭分别使沼气池中总氨氮(TAN)浓度降低了25%和35.5%。定量聚合酶链反应(QPCR)数据显示,在第18天,生物炭和koh改性生物炭沼气池中的16S rRNA基因拷贝数分别比对照沼气池高约5万倍和4.1万倍。分类学分析表明,BC和KOH-BC沼气池的产甲烷途径包括醋酸裂解(Methanosaetaceae)、氢营养(Methanosarcinaceae)和甲基化(Methanofastidiosaceae)。这种途径的混合表明,古菌群落更强大,因此,更有效的甲烷生成。结果表明,生物固体炭的添加促进了厌氧消化,减轻了产甲烷菌的氨胁迫,显著提高了沼气产量。
Biosolids-Derived Biochar Improves Biomethane Production in the Anaerobic Digestion of Chicken Manure
Anaerobic digestion has attracted great interest for use in the management of organic wastes and the production of biomethane. However, this process is facing challenges, such as a high concentration of ammonia nitrogen, which affects the methanogenesis process and, thus, the production of methane. This study investigates the use of biosolid-derived biochar for mitigating ammonia stress and improving methane production during the anaerobic digestion of chicken manure, using both pristine biochar and biochar modified with a potassium hydroxide (KOH) solution. Batch mesophilic anaerobic digestion (37 °C) was carried out over 18 days. When compared to chicken-manure-only controls, a significant increase in methane formation was observed in the digesters amended with biochar and KOH-modified biochar, producing 220 L kg−1 volatile solids (VSs) and 262 L kg−1 VSs of methane, respectively, compared to 139 L kg−1 VSs from the control digesters. The use of biochar and KOH-modified biochar resulted in a significant reduction of 8 days in the lag phase. The total ammonia nitrogen (TAN) concentration was reduced in the digesters with biochar and KOH-modified biochar by 25% and 35.5%, respectively. The quantitative polymerase chain reaction (QPCR) data revealed that the number of 16S rRNA gene copies was around 50,000 and 41,000 times higher in the biochar and KOH-modified biochar digesters, respectively, compared to the control digesters on day 18. The taxonomic profiles indicated that the BC and KOH-BC digesters contained a mixture of methanogenic pathways, including acetoclastic (Methanosaetaceae), hydrogenotrophic (Methanosarcinaceae), and methylation (Methanofastidiosaceae). This mix of pathways suggests a more robust archaeal community and, hence, more efficient methanogenesis. The results show that the addition of biosolids biochar enhances anaerobic digestion, mitigates ammonia stress to methanogens, and significantly increases biogas production.
ResourcesEnvironmental Science-Nature and Landscape Conservation
CiteScore
7.20
自引率
6.10%
发文量
0
审稿时长
11 weeks
期刊介绍:
Resources (ISSN 2079-9276) is an international, scholarly open access journal on the topic of natural resources. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and methodical details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: manuscripts regarding research proposals and research ideas will be particularly welcomed, electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Subject Areas: natural resources, water resources, mineral resources, energy resources, land resources, plant and animal resources, genetic resources, ecology resources, resource management and policy, resources conservation and recycling.