一元$\rm{SL}_2(\mathbb{R})$表示的分类注释

Q3 Mathematics
Amjad Alghamdi
{"title":"一元$\\rm{SL}_2(\\mathbb{R})$表示的分类注释","authors":"Amjad Alghamdi","doi":"10.5539/jmr.v15n5p22","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to explain the classification of the unitary SL_2(R) representations done by Gelfand by using the induced representation technique. We induce the SL_2(R) representation from the subgroup N. We get a representation constructed on a space of homogeneous functions in two variables. Then, we move to induce the SL_2(R) representation in stages. Consequently, the representation of SL_2(R) acts on a space of functions of one variable.","PeriodicalId":38619,"journal":{"name":"International Journal of Mathematics in Operational Research","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Note on the Classification of the Unitary $\\\\rm{SL}_2(\\\\mathbb{R})$ Representations\",\"authors\":\"Amjad Alghamdi\",\"doi\":\"10.5539/jmr.v15n5p22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to explain the classification of the unitary SL_2(R) representations done by Gelfand by using the induced representation technique. We induce the SL_2(R) representation from the subgroup N. We get a representation constructed on a space of homogeneous functions in two variables. Then, we move to induce the SL_2(R) representation in stages. Consequently, the representation of SL_2(R) acts on a space of functions of one variable.\",\"PeriodicalId\":38619,\"journal\":{\"name\":\"International Journal of Mathematics in Operational Research\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics in Operational Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/jmr.v15n5p22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics in Operational Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/jmr.v15n5p22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是用归纳表示技术解释Gelfand所做的幺正SL_2(R)表示的分类。从子群n中导出了SL_2(R)表示,得到了在二元齐次函数空间上构造的一个表示。然后,我们逐步归纳出SL_2(R)的表示。因此,SL_2(R)的表示作用于一个一元函数空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Note on the Classification of the Unitary $\rm{SL}_2(\mathbb{R})$ Representations
The aim of this paper is to explain the classification of the unitary SL_2(R) representations done by Gelfand by using the induced representation technique. We induce the SL_2(R) representation from the subgroup N. We get a representation constructed on a space of homogeneous functions in two variables. Then, we move to induce the SL_2(R) representation in stages. Consequently, the representation of SL_2(R) acts on a space of functions of one variable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mathematics in Operational Research
International Journal of Mathematics in Operational Research Decision Sciences-Decision Sciences (all)
CiteScore
2.10
自引率
0.00%
发文量
44
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信