{"title":"带有源能量缓冲器的双有源桥式交直流变换器断续电流模式的工作特性","authors":"Shohei Komeda, Shunsuke Takuma, Yoshiya Ohnuma, Ryo Gondo, Daisuke Maezaki, Noritaka Taguchi","doi":"10.1541/ieejjia.22004964","DOIUrl":null,"url":null,"abstract":"This paper discusses operation characteristics of discontinuous current mode (DCM) for an ac-dc isolated converter for on-board battery chargers of electric vehicles. The converter discussed in this paper consists of a front-end diode- bridge rectifier, an active energy buffer, and a dual-active-bridge dc-dc converter. The energy buffer circuit absorbs the power pulsation from the single-phase ac line into a small-rated capacitor, and thus, makes it possible to reduce a required capacitance of the dc-link capacitor. This paper explains details of the DCM control method including a technique of the ripple cancel of the inductor current, to realize the power factor correction of the line current and the voltage control of the buffer capacitor at the same time without complex calculations. Then, a reference value of the inductor current and an operation range of the dc-output voltage are discussed. Experimental results obtained by a 220-V, 6.6-kW experimental setup demonstrate a sinusoidal-line current and a controlled buffer capacitor voltage as well as a smoothed dc-output current.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operation Characteristics of Discontinuous Current Mode for a Dual-Active-Bridge AC-DC Converter with an Active Energy Buffer\",\"authors\":\"Shohei Komeda, Shunsuke Takuma, Yoshiya Ohnuma, Ryo Gondo, Daisuke Maezaki, Noritaka Taguchi\",\"doi\":\"10.1541/ieejjia.22004964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses operation characteristics of discontinuous current mode (DCM) for an ac-dc isolated converter for on-board battery chargers of electric vehicles. The converter discussed in this paper consists of a front-end diode- bridge rectifier, an active energy buffer, and a dual-active-bridge dc-dc converter. The energy buffer circuit absorbs the power pulsation from the single-phase ac line into a small-rated capacitor, and thus, makes it possible to reduce a required capacitance of the dc-link capacitor. This paper explains details of the DCM control method including a technique of the ripple cancel of the inductor current, to realize the power factor correction of the line current and the voltage control of the buffer capacitor at the same time without complex calculations. Then, a reference value of the inductor current and an operation range of the dc-output voltage are discussed. Experimental results obtained by a 220-V, 6.6-kW experimental setup demonstrate a sinusoidal-line current and a controlled buffer capacitor voltage as well as a smoothed dc-output current.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1541/ieejjia.22004964\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1541/ieejjia.22004964","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Operation Characteristics of Discontinuous Current Mode for a Dual-Active-Bridge AC-DC Converter with an Active Energy Buffer
This paper discusses operation characteristics of discontinuous current mode (DCM) for an ac-dc isolated converter for on-board battery chargers of electric vehicles. The converter discussed in this paper consists of a front-end diode- bridge rectifier, an active energy buffer, and a dual-active-bridge dc-dc converter. The energy buffer circuit absorbs the power pulsation from the single-phase ac line into a small-rated capacitor, and thus, makes it possible to reduce a required capacitance of the dc-link capacitor. This paper explains details of the DCM control method including a technique of the ripple cancel of the inductor current, to realize the power factor correction of the line current and the voltage control of the buffer capacitor at the same time without complex calculations. Then, a reference value of the inductor current and an operation range of the dc-output voltage are discussed. Experimental results obtained by a 220-V, 6.6-kW experimental setup demonstrate a sinusoidal-line current and a controlled buffer capacitor voltage as well as a smoothed dc-output current.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.