超分子化学:揭开非共价相互作用和复杂组装的迷人世界

Shreya Talreja, Shashank Tiwari
{"title":"超分子化学:揭开非共价相互作用和复杂组装的迷人世界","authors":"Shreya Talreja, Shashank Tiwari","doi":"10.26502/fjppr.075","DOIUrl":null,"url":null,"abstract":"Supramolecular chemistry is a captivating and interdisciplinary field that explores the interactions between molecules to form complex and functional assemblies through non-covalent forces. This review paper presents an in-depth exploration of the fundamental concepts, supramolecular assemblies and structures, applications in nanotechnology and biology, as well as challenges and future perspectives in supramolecular chemistry. The paper begins by elucidating the fundamental principles of supramolecular chemistry, emphasizing the significance of weak, non-covalent interactions such as hydrogen bonding, van der Waals forces, and π-π interactions. Molecular recognition, self-assembly, and host-guest interactions are highlighted as key concepts shaping the field. Subsequently, the review delves into various supramolecular assemblies and structures, showcasing the diversity of nanoscale architectures that arise from self-assembly processes. From nanotubes and nanofibers to metal-organic frameworks and dynamic supramolecular systems, each structure's properties and potential applications are explored. The application of supramolecular chemistry in nanotechnology and biology is a central focus of the paper. It covers the design of supramolecular materials for drug delivery, nanoelectronics, nanosensors, and biomimetic systems. Additionally, the integration of supramolecular approaches in biology, including molecular recognition, enzyme mimics, and bioimaging, is discussed in detail. Furthermore, the challenges faced by supramolecular chemistry, such as predictability, stability, and scalability, are addressed. The paper also looks into the future perspectives of the field, envisioning adaptive materials, supramolecular machines, and data-driven design as exciting prospects. Overall, this comprehensive review offers a thorough understanding of the captivating world of supramolecular chemistry and its potential to revolutionize various scientific and technological domains. Through interdisciplinary efforts and a focus on sustainability, supramolecular chemistry holds promise for addressing real-world challenges and shaping a future defined by innovative materials and transformative applications.","PeriodicalId":73897,"journal":{"name":"Journal of pharmacy and pharmacology research","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supramolecular Chemistry: Unveiling the Fascinating World of Non-Covalent Interactions and Complex Assemblies\",\"authors\":\"Shreya Talreja, Shashank Tiwari\",\"doi\":\"10.26502/fjppr.075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supramolecular chemistry is a captivating and interdisciplinary field that explores the interactions between molecules to form complex and functional assemblies through non-covalent forces. This review paper presents an in-depth exploration of the fundamental concepts, supramolecular assemblies and structures, applications in nanotechnology and biology, as well as challenges and future perspectives in supramolecular chemistry. The paper begins by elucidating the fundamental principles of supramolecular chemistry, emphasizing the significance of weak, non-covalent interactions such as hydrogen bonding, van der Waals forces, and π-π interactions. Molecular recognition, self-assembly, and host-guest interactions are highlighted as key concepts shaping the field. Subsequently, the review delves into various supramolecular assemblies and structures, showcasing the diversity of nanoscale architectures that arise from self-assembly processes. From nanotubes and nanofibers to metal-organic frameworks and dynamic supramolecular systems, each structure's properties and potential applications are explored. The application of supramolecular chemistry in nanotechnology and biology is a central focus of the paper. It covers the design of supramolecular materials for drug delivery, nanoelectronics, nanosensors, and biomimetic systems. Additionally, the integration of supramolecular approaches in biology, including molecular recognition, enzyme mimics, and bioimaging, is discussed in detail. Furthermore, the challenges faced by supramolecular chemistry, such as predictability, stability, and scalability, are addressed. The paper also looks into the future perspectives of the field, envisioning adaptive materials, supramolecular machines, and data-driven design as exciting prospects. Overall, this comprehensive review offers a thorough understanding of the captivating world of supramolecular chemistry and its potential to revolutionize various scientific and technological domains. Through interdisciplinary efforts and a focus on sustainability, supramolecular chemistry holds promise for addressing real-world challenges and shaping a future defined by innovative materials and transformative applications.\",\"PeriodicalId\":73897,\"journal\":{\"name\":\"Journal of pharmacy and pharmacology research\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmacy and pharmacology research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26502/fjppr.075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacy and pharmacology research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26502/fjppr.075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超分子化学是一个迷人的跨学科领域,它探索分子之间的相互作用,通过非共价力形成复杂的功能组装。本文综述了超分子化学的基本概念、超分子组装和结构、在纳米技术和生物学中的应用,以及超分子化学面临的挑战和未来的展望。本文首先阐述了超分子化学的基本原理,强调了弱非共价相互作用的重要性,如氢键、范德华力和π-π相互作用。分子识别、自组装和主客互动被强调为塑造该领域的关键概念。随后,该综述深入研究了各种超分子组装和结构,展示了自组装过程中产生的纳米级结构的多样性。从纳米管和纳米纤维到金属有机框架和动态超分子体系,探索了每种结构的性质和潜在应用。超分子化学在纳米技术和生物学中的应用是本文的中心焦点。它涵盖了用于药物输送的超分子材料的设计,纳米电子学,纳米传感器和仿生系统。此外,还详细讨论了生物学中超分子方法的整合,包括分子识别,酶模拟和生物成像。此外,还解决了超分子化学面临的挑战,如可预测性、稳定性和可扩展性。论文还展望了该领域的未来前景,展望了自适应材料、超分子机器和数据驱动设计等令人兴奋的前景。总的来说,这篇全面的综述提供了对超分子化学的迷人世界的透彻理解及其在各种科学和技术领域的革命性潜力。通过跨学科的努力和对可持续性的关注,超分子化学有望解决现实世界的挑战,塑造一个由创新材料和变革应用定义的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supramolecular Chemistry: Unveiling the Fascinating World of Non-Covalent Interactions and Complex Assemblies
Supramolecular chemistry is a captivating and interdisciplinary field that explores the interactions between molecules to form complex and functional assemblies through non-covalent forces. This review paper presents an in-depth exploration of the fundamental concepts, supramolecular assemblies and structures, applications in nanotechnology and biology, as well as challenges and future perspectives in supramolecular chemistry. The paper begins by elucidating the fundamental principles of supramolecular chemistry, emphasizing the significance of weak, non-covalent interactions such as hydrogen bonding, van der Waals forces, and π-π interactions. Molecular recognition, self-assembly, and host-guest interactions are highlighted as key concepts shaping the field. Subsequently, the review delves into various supramolecular assemblies and structures, showcasing the diversity of nanoscale architectures that arise from self-assembly processes. From nanotubes and nanofibers to metal-organic frameworks and dynamic supramolecular systems, each structure's properties and potential applications are explored. The application of supramolecular chemistry in nanotechnology and biology is a central focus of the paper. It covers the design of supramolecular materials for drug delivery, nanoelectronics, nanosensors, and biomimetic systems. Additionally, the integration of supramolecular approaches in biology, including molecular recognition, enzyme mimics, and bioimaging, is discussed in detail. Furthermore, the challenges faced by supramolecular chemistry, such as predictability, stability, and scalability, are addressed. The paper also looks into the future perspectives of the field, envisioning adaptive materials, supramolecular machines, and data-driven design as exciting prospects. Overall, this comprehensive review offers a thorough understanding of the captivating world of supramolecular chemistry and its potential to revolutionize various scientific and technological domains. Through interdisciplinary efforts and a focus on sustainability, supramolecular chemistry holds promise for addressing real-world challenges and shaping a future defined by innovative materials and transformative applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信