基于在线模拟器的认知模型选择实验设计

Alexander Aushev, Aini Putkonen, Grégoire Clarté, Suyog Chandramouli, Luigi Acerbi, Samuel Kaski, Andrew Howes
{"title":"基于在线模拟器的认知模型选择实验设计","authors":"Alexander Aushev, Aini Putkonen, Grégoire Clarté, Suyog Chandramouli, Luigi Acerbi, Samuel Kaski, Andrew Howes","doi":"10.1007/s42113-023-00180-7","DOIUrl":null,"url":null,"abstract":"Abstract The problem of model selection with a limited number of experimental trials has received considerable attention in cognitive science, where the role of experiments is to discriminate between theories expressed as computational models. Research on this subject has mostly been restricted to optimal experiment design with analytically tractable models. However, cognitive models of increasing complexity with intractable likelihoods are becoming more commonplace. In this paper, we propose BOSMOS, an approach to experimental design that can select between computational models without tractable likelihoods. It does so in a data-efficient manner by sequentially and adaptively generating informative experiments. In contrast to previous approaches, we introduce a novel simulator-based utility objective for design selection and a new approximation of the model likelihood for model selection. In simulated experiments, we demonstrate that the proposed BOSMOS technique can accurately select models in up to two orders of magnitude less time than existing LFI alternatives for three cognitive science tasks: memory retention, sequential signal detection, and risky choice.","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Online Simulator-Based Experimental Design for Cognitive Model Selection\",\"authors\":\"Alexander Aushev, Aini Putkonen, Grégoire Clarté, Suyog Chandramouli, Luigi Acerbi, Samuel Kaski, Andrew Howes\",\"doi\":\"10.1007/s42113-023-00180-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The problem of model selection with a limited number of experimental trials has received considerable attention in cognitive science, where the role of experiments is to discriminate between theories expressed as computational models. Research on this subject has mostly been restricted to optimal experiment design with analytically tractable models. However, cognitive models of increasing complexity with intractable likelihoods are becoming more commonplace. In this paper, we propose BOSMOS, an approach to experimental design that can select between computational models without tractable likelihoods. It does so in a data-efficient manner by sequentially and adaptively generating informative experiments. In contrast to previous approaches, we introduce a novel simulator-based utility objective for design selection and a new approximation of the model likelihood for model selection. In simulated experiments, we demonstrate that the proposed BOSMOS technique can accurately select models in up to two orders of magnitude less time than existing LFI alternatives for three cognitive science tasks: memory retention, sequential signal detection, and risky choice.\",\"PeriodicalId\":72660,\"journal\":{\"name\":\"Computational brain & behavior\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational brain & behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42113-023-00180-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational brain & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42113-023-00180-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在认知科学中,通过有限数量的实验选择模型的问题受到了相当大的关注,在认知科学中,实验的作用是区分以计算模型表示的理论。对这一问题的研究大多局限于具有解析可处理模型的最优实验设计。然而,越来越复杂的认知模型和难以处理的可能性正变得越来越普遍。在本文中,我们提出了BOSMOS,一种实验设计方法,可以在没有可处理似然的计算模型之间进行选择。它通过顺序和自适应地生成信息实验,以数据高效的方式做到这一点。与以前的方法相比,我们引入了一种新的基于模拟器的实用目标来进行设计选择,并引入了一种新的模型似然近似来进行模型选择。在模拟实验中,我们证明了所提出的BOSMOS技术可以在三个认知科学任务(记忆保留、顺序信号检测和风险选择)中比现有的LFI替代方案少两个数量级的时间内准确地选择模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Simulator-Based Experimental Design for Cognitive Model Selection
Abstract The problem of model selection with a limited number of experimental trials has received considerable attention in cognitive science, where the role of experiments is to discriminate between theories expressed as computational models. Research on this subject has mostly been restricted to optimal experiment design with analytically tractable models. However, cognitive models of increasing complexity with intractable likelihoods are becoming more commonplace. In this paper, we propose BOSMOS, an approach to experimental design that can select between computational models without tractable likelihoods. It does so in a data-efficient manner by sequentially and adaptively generating informative experiments. In contrast to previous approaches, we introduce a novel simulator-based utility objective for design selection and a new approximation of the model likelihood for model selection. In simulated experiments, we demonstrate that the proposed BOSMOS technique can accurately select models in up to two orders of magnitude less time than existing LFI alternatives for three cognitive science tasks: memory retention, sequential signal detection, and risky choice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信