{"title":"基于改进蜘蛛蜂优化器的光伏电池和组件未知参数高性能估计技术","authors":"Safa Saber, Sara Salem","doi":"10.61185/smij.2023.55102","DOIUrl":null,"url":null,"abstract":"To better estimate the unknown parameters of the double-diode model, a new optimization technique based on the newly proposed spider wasp optimizer (SWO) is introduced in this study. The performance of SWO was further enhanced by integrating it with a local search strategy to propose a new improved variant called ISWO. This improved variant has a high ability to extensively exploit the solutions surrounding the best-so-far solution in an effort to speed up convergence and produce better results in fewer function evaluations. Using the RTC France solar cell and three PV modules (STM6-40/36, STP6-120/36, and Kyocera KC200GT), ISWO and SWO are evaluated and compared to four well-known metaheuristic optimization methods. The objective values acquired by those algorithms in thirty separate runs are examined using the Wilcoxon rank sum test and a number of performance measures. The experimental findings demonstrate ISWO's exceptional performance for every PV module under consideration.","PeriodicalId":148129,"journal":{"name":"Sustainable Machine Intelligence Journal","volume":"56 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Performance Technique for Estimating the Unknown Parameters of Photovoltaic Cells and Modules Based on Improved Spider Wasp Optimizer\",\"authors\":\"Safa Saber, Sara Salem\",\"doi\":\"10.61185/smij.2023.55102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To better estimate the unknown parameters of the double-diode model, a new optimization technique based on the newly proposed spider wasp optimizer (SWO) is introduced in this study. The performance of SWO was further enhanced by integrating it with a local search strategy to propose a new improved variant called ISWO. This improved variant has a high ability to extensively exploit the solutions surrounding the best-so-far solution in an effort to speed up convergence and produce better results in fewer function evaluations. Using the RTC France solar cell and three PV modules (STM6-40/36, STP6-120/36, and Kyocera KC200GT), ISWO and SWO are evaluated and compared to four well-known metaheuristic optimization methods. The objective values acquired by those algorithms in thirty separate runs are examined using the Wilcoxon rank sum test and a number of performance measures. The experimental findings demonstrate ISWO's exceptional performance for every PV module under consideration.\",\"PeriodicalId\":148129,\"journal\":{\"name\":\"Sustainable Machine Intelligence Journal\",\"volume\":\"56 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Machine Intelligence Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61185/smij.2023.55102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Machine Intelligence Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61185/smij.2023.55102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Performance Technique for Estimating the Unknown Parameters of Photovoltaic Cells and Modules Based on Improved Spider Wasp Optimizer
To better estimate the unknown parameters of the double-diode model, a new optimization technique based on the newly proposed spider wasp optimizer (SWO) is introduced in this study. The performance of SWO was further enhanced by integrating it with a local search strategy to propose a new improved variant called ISWO. This improved variant has a high ability to extensively exploit the solutions surrounding the best-so-far solution in an effort to speed up convergence and produce better results in fewer function evaluations. Using the RTC France solar cell and three PV modules (STM6-40/36, STP6-120/36, and Kyocera KC200GT), ISWO and SWO are evaluated and compared to four well-known metaheuristic optimization methods. The objective values acquired by those algorithms in thirty separate runs are examined using the Wilcoxon rank sum test and a number of performance measures. The experimental findings demonstrate ISWO's exceptional performance for every PV module under consideration.