瑟斯顿几何中的经典概念和问题

IF 0.4 Q4 MATHEMATICS
Jenő SZİRMAİ
{"title":"瑟斯顿几何中的经典概念和问题","authors":"Jenő SZİRMAİ","doi":"10.36890/iejg.1221802","DOIUrl":null,"url":null,"abstract":"Of the Thurston geometries, those with constant curvature geometries (Euclidean $ E^3$, hyperbolic $ H^3$, spherical $ S^3$) have been extensively studied, but the other five geometries, $ H^2\\times R$, $ S^2\\times R$, $Nil$, $\\widetilde{SL_2 R}$, $Sol$ have been thoroughly studied only from a differential geometry and topological point of view. However, classical concepts highlighting the beauty and underlying structure of these geometries -- such as geodesic curves and spheres, the lattices, the geodesic triangles and their surfaces, their interior sum of angles and similar statements to those known in constant curvature geometries -- can be formulated. These have not been the focus of attention. In this survey, we summarize our results on this topic and pose additional open questions.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":"93 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Classical notions and problems in Thurston geometries\",\"authors\":\"Jenő SZİRMAİ\",\"doi\":\"10.36890/iejg.1221802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Of the Thurston geometries, those with constant curvature geometries (Euclidean $ E^3$, hyperbolic $ H^3$, spherical $ S^3$) have been extensively studied, but the other five geometries, $ H^2\\\\times R$, $ S^2\\\\times R$, $Nil$, $\\\\widetilde{SL_2 R}$, $Sol$ have been thoroughly studied only from a differential geometry and topological point of view. However, classical concepts highlighting the beauty and underlying structure of these geometries -- such as geodesic curves and spheres, the lattices, the geodesic triangles and their surfaces, their interior sum of angles and similar statements to those known in constant curvature geometries -- can be formulated. These have not been the focus of attention. In this survey, we summarize our results on this topic and pose additional open questions.\",\"PeriodicalId\":43768,\"journal\":{\"name\":\"International Electronic Journal of Geometry\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36890/iejg.1221802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/iejg.1221802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

在瑟斯顿几何中,具有常曲率的几何(欧几里得E^3$,双曲H^3$,球面S^3$)已被广泛研究,但其他五种几何,$ H^2\乘以R$, $S ^2\乘以R$, $Nil$, $ widetilde{SL_2 R}$, $Sol$仅从微分几何和拓扑的角度进行了深入研究。然而,强调这些几何的美丽和潜在结构的经典概念——如测地线曲线和球体、网格、测地线三角形和它们的表面、它们的内角和以及与常曲率几何中已知的类似的陈述——可以公式化。这些都不是人们关注的焦点。在这项调查中,我们总结了我们在这个主题上的结果,并提出了额外的开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classical notions and problems in Thurston geometries
Of the Thurston geometries, those with constant curvature geometries (Euclidean $ E^3$, hyperbolic $ H^3$, spherical $ S^3$) have been extensively studied, but the other five geometries, $ H^2\times R$, $ S^2\times R$, $Nil$, $\widetilde{SL_2 R}$, $Sol$ have been thoroughly studied only from a differential geometry and topological point of view. However, classical concepts highlighting the beauty and underlying structure of these geometries -- such as geodesic curves and spheres, the lattices, the geodesic triangles and their surfaces, their interior sum of angles and similar statements to those known in constant curvature geometries -- can be formulated. These have not been the focus of attention. In this survey, we summarize our results on this topic and pose additional open questions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信