基于混合分布分析的轴承剩余使用寿命特征选择方法

IF 2.8 Q2 MULTIDISCIPLINARY SCIENCES
Fei Huang, Alexandre Sava, Kondo H. Adjallah, Dongyang Zhang
{"title":"基于混合分布分析的轴承剩余使用寿命特征选择方法","authors":"Fei Huang, Alexandre Sava, Kondo H. Adjallah, Dongyang Zhang","doi":"10.1007/s42452-023-05518-1","DOIUrl":null,"url":null,"abstract":"Abstract Feature selection is a difficult but highly important preliminary step for bearings remaining useful life (RUL) estimation. To avoid the weights setting problem in hybrid metric, this work devotes to conduct feature selection by using a single metric. Due to noise and outliers, an existing feature selection metric, called monotonicity, used for estimating bearings RUL, requires data smoothing processing before adequate implementation. Such a smoothing process may remove significant part of meaningful information from data. To overcome this issue, a mixture distribution analysis-based feature selection metric is proposed. Moreover, based on this new metric, a feature selection approach for bearings RUL estimation is proposed. Numerical experiments benchmarking the proposed method and the existing metric monotonicity method on available real datasets highlight its effectiveness.","PeriodicalId":21821,"journal":{"name":"SN Applied Sciences","volume":"12 2","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mixture distributions analysis based feature selection approach for bearing remaining useful life estimation\",\"authors\":\"Fei Huang, Alexandre Sava, Kondo H. Adjallah, Dongyang Zhang\",\"doi\":\"10.1007/s42452-023-05518-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Feature selection is a difficult but highly important preliminary step for bearings remaining useful life (RUL) estimation. To avoid the weights setting problem in hybrid metric, this work devotes to conduct feature selection by using a single metric. Due to noise and outliers, an existing feature selection metric, called monotonicity, used for estimating bearings RUL, requires data smoothing processing before adequate implementation. Such a smoothing process may remove significant part of meaningful information from data. To overcome this issue, a mixture distribution analysis-based feature selection metric is proposed. Moreover, based on this new metric, a feature selection approach for bearings RUL estimation is proposed. Numerical experiments benchmarking the proposed method and the existing metric monotonicity method on available real datasets highlight its effectiveness.\",\"PeriodicalId\":21821,\"journal\":{\"name\":\"SN Applied Sciences\",\"volume\":\"12 2\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SN Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42452-023-05518-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SN Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42452-023-05518-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要特征选择是轴承剩余使用寿命估计的一个困难但又非常重要的步骤。为了避免混合度量中的权值设置问题,本文致力于使用单个度量进行特征选择。由于噪声和离群值,用于估计轴承RUL的现有特征选择度量称为单调性,在充分实现之前需要对数据进行平滑处理。这种平滑处理可能会从数据中去除重要的有意义的信息。为了克服这一问题,提出了一种基于混合分布分析的特征选择度量。在此基础上,提出了一种用于轴承RUL估计的特征选择方法。在实际数据集上对该方法和现有度量单调性方法进行了数值对比实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A mixture distributions analysis based feature selection approach for bearing remaining useful life estimation
Abstract Feature selection is a difficult but highly important preliminary step for bearings remaining useful life (RUL) estimation. To avoid the weights setting problem in hybrid metric, this work devotes to conduct feature selection by using a single metric. Due to noise and outliers, an existing feature selection metric, called monotonicity, used for estimating bearings RUL, requires data smoothing processing before adequate implementation. Such a smoothing process may remove significant part of meaningful information from data. To overcome this issue, a mixture distribution analysis-based feature selection metric is proposed. Moreover, based on this new metric, a feature selection approach for bearings RUL estimation is proposed. Numerical experiments benchmarking the proposed method and the existing metric monotonicity method on available real datasets highlight its effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SN Applied Sciences
SN Applied Sciences MULTIDISCIPLINARY SCIENCES-
自引率
3.80%
发文量
292
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信