在满足广义爱因斯坦度量条件的半黎曼流形上

IF 0.4 Q4 MATHEMATICS
Miroslava PETROVİĆ-TORGAŠEV, Ryszard DESZCZ, Małgorzata GŁOGOWSKA, Marian HOTLOŚ, Georges ZAFİNDRATAFA
{"title":"在满足广义爱因斯坦度量条件的半黎曼流形上","authors":"Miroslava PETROVİĆ-TORGAŠEV, Ryszard DESZCZ, Małgorzata GŁOGOWSKA, Marian HOTLOŚ, Georges ZAFİNDRATAFA","doi":"10.36890/iejg.1323352","DOIUrl":null,"url":null,"abstract":"The derivation-commutator $R \\cdot C - C \\cdot R$ of a semi-Riemannian manifold $(M,g)$, $\\dim M \\geq 4$, formed by its Riemann-Christoffel curvature tensor $R$ and the Weyl conformal curvature tensor $C$, under some assumptions, can be expressed as a linear combination of $(0,6)$-Tachibana tensors $Q(A,T)$, where $A$ is a symmetric $(0,2)$-tensor and $T$ a generalized curvature tensor. These conditions form a family of generalized Einstein metric conditions. In this survey paper we present recent results on manifolds and submanifolds, and in particular hypersurfaces, satisfying such conditions.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":"46 9","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ON SEMI-RIEMANNIAN MANIFOLDS SATISFYING SOME GENERALIZED EINSTEIN METRIC CONDITIONS\",\"authors\":\"Miroslava PETROVİĆ-TORGAŠEV, Ryszard DESZCZ, Małgorzata GŁOGOWSKA, Marian HOTLOŚ, Georges ZAFİNDRATAFA\",\"doi\":\"10.36890/iejg.1323352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The derivation-commutator $R \\\\cdot C - C \\\\cdot R$ of a semi-Riemannian manifold $(M,g)$, $\\\\dim M \\\\geq 4$, formed by its Riemann-Christoffel curvature tensor $R$ and the Weyl conformal curvature tensor $C$, under some assumptions, can be expressed as a linear combination of $(0,6)$-Tachibana tensors $Q(A,T)$, where $A$ is a symmetric $(0,2)$-tensor and $T$ a generalized curvature tensor. These conditions form a family of generalized Einstein metric conditions. In this survey paper we present recent results on manifolds and submanifolds, and in particular hypersurfaces, satisfying such conditions.\",\"PeriodicalId\":43768,\"journal\":{\"name\":\"International Electronic Journal of Geometry\",\"volume\":\"46 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36890/iejg.1323352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/iejg.1323352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

微分对易子 $R \cdot C - C \cdot R$ 半黎曼流形的 $(M,g)$, $\dim M \geq 4$由它的黎曼-克里斯托费尔曲率张量构成 $R$ 和Weyl共形曲率张量 $C$,在某些假设下,可以表示为的线性组合 $(0,6)$-立花张量 $Q(A,T)$,其中 $A$ 是对称的 $(0,2)$-张量和 $T$ 广义曲率张量。这些条件构成了广义爱因斯坦度规条件的一类。在这篇综述文章中,我们给出了最近关于流形和子流形,特别是超曲面,满足这些条件的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON SEMI-RIEMANNIAN MANIFOLDS SATISFYING SOME GENERALIZED EINSTEIN METRIC CONDITIONS
The derivation-commutator $R \cdot C - C \cdot R$ of a semi-Riemannian manifold $(M,g)$, $\dim M \geq 4$, formed by its Riemann-Christoffel curvature tensor $R$ and the Weyl conformal curvature tensor $C$, under some assumptions, can be expressed as a linear combination of $(0,6)$-Tachibana tensors $Q(A,T)$, where $A$ is a symmetric $(0,2)$-tensor and $T$ a generalized curvature tensor. These conditions form a family of generalized Einstein metric conditions. In this survey paper we present recent results on manifolds and submanifolds, and in particular hypersurfaces, satisfying such conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信