沿曲线平行曲面的近似

IF 0.4 Q4 MATHEMATICS
Büşra KÖSE, Yusuf YAYLI
{"title":"沿曲线平行曲面的近似","authors":"Büşra KÖSE, Yusuf YAYLI","doi":"10.36890/iejg.1362590","DOIUrl":null,"url":null,"abstract":"In this paper, we study developable surfaces which are flat and normal approximation of parallel surfaces along curves associated with three special vector fields. It is known that a surface whose points are at a constant distance along the normal of the surface is called a parallel surface. We investigate singularities of such developable surfaces. We show that under what conditions the approach surfaces are parallel. Also, we show that the approach surfaces are constant angle ruled surfaces if the curves selected on the surfaces are isophote, relatively normal-slant helix and helix.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":"70 4","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximations of Parallel Surfaces Along Curves\",\"authors\":\"Büşra KÖSE, Yusuf YAYLI\",\"doi\":\"10.36890/iejg.1362590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study developable surfaces which are flat and normal approximation of parallel surfaces along curves associated with three special vector fields. It is known that a surface whose points are at a constant distance along the normal of the surface is called a parallel surface. We investigate singularities of such developable surfaces. We show that under what conditions the approach surfaces are parallel. Also, we show that the approach surfaces are constant angle ruled surfaces if the curves selected on the surfaces are isophote, relatively normal-slant helix and helix.\",\"PeriodicalId\":43768,\"journal\":{\"name\":\"International Electronic Journal of Geometry\",\"volume\":\"70 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36890/iejg.1362590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/iejg.1362590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了与三个特殊向量场相关的曲线上的平面和平行曲面的法向逼近的可展曲面。我们知道,点沿其法线处于恒定距离的曲面称为平行曲面。我们研究了这类可展曲面的奇异性。我们证明了在什么条件下接近面是平行的。此外,我们还表明,如果在表面上选择的曲线是等径面,相对正斜螺旋线和螺旋线,则接近曲面是等角直纹曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximations of Parallel Surfaces Along Curves
In this paper, we study developable surfaces which are flat and normal approximation of parallel surfaces along curves associated with three special vector fields. It is known that a surface whose points are at a constant distance along the normal of the surface is called a parallel surface. We investigate singularities of such developable surfaces. We show that under what conditions the approach surfaces are parallel. Also, we show that the approach surfaces are constant angle ruled surfaces if the curves selected on the surfaces are isophote, relatively normal-slant helix and helix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信