Klein二次函数的模糊对应物

IF 0.4 Q4 MATHEMATICS
Ziya AKÇA, Abdilkadir ALTINTAŞ
{"title":"Klein二次函数的模糊对应物","authors":"Ziya AKÇA, Abdilkadir ALTINTAŞ","doi":"10.36890/iejg.1343784","DOIUrl":null,"url":null,"abstract":"Many techniques have been proposed to project the high-dimensional space into a low-dimensional space, one of the most famous methods being principal component analysis. The Klein quadric is a geometric shape defined by a second-degree homogeneous equation. The lines of projective three-space are, via the Klein mapping, in one-to-one correspondence with points of a hyperbolic quadric of the projective 5-space. This paper presents a research study on he images under the Klein mapping of the projectice 3-space order of 4 and the fuzzification of the Klein quadric in 5-dimensional projective space.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":"51 5","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy Counterpart of Klein Quadric\",\"authors\":\"Ziya AKÇA, Abdilkadir ALTINTAŞ\",\"doi\":\"10.36890/iejg.1343784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many techniques have been proposed to project the high-dimensional space into a low-dimensional space, one of the most famous methods being principal component analysis. The Klein quadric is a geometric shape defined by a second-degree homogeneous equation. The lines of projective three-space are, via the Klein mapping, in one-to-one correspondence with points of a hyperbolic quadric of the projective 5-space. This paper presents a research study on he images under the Klein mapping of the projectice 3-space order of 4 and the fuzzification of the Klein quadric in 5-dimensional projective space.\",\"PeriodicalId\":43768,\"journal\":{\"name\":\"International Electronic Journal of Geometry\",\"volume\":\"51 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36890/iejg.1343784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/iejg.1343784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

人们提出了许多将高维空间映射到低维空间的方法,其中最著名的方法是主成分分析。Klein二次曲面是由二阶齐次方程定义的几何形状。通过克莱因映射,射影三维空间的直线与射影5空间的双曲二次曲面上的点一一对应。本文研究了5维投影空间中4阶Klein映射下的图像以及Klein二次曲面的模糊化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy Counterpart of Klein Quadric
Many techniques have been proposed to project the high-dimensional space into a low-dimensional space, one of the most famous methods being principal component analysis. The Klein quadric is a geometric shape defined by a second-degree homogeneous equation. The lines of projective three-space are, via the Klein mapping, in one-to-one correspondence with points of a hyperbolic quadric of the projective 5-space. This paper presents a research study on he images under the Klein mapping of the projectice 3-space order of 4 and the fuzzification of the Klein quadric in 5-dimensional projective space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信