采用Android的天真贝斯算法,以早期症状为基础的Covid-19检测疾病

Teknika Pub Date : 2023-10-30 DOI:10.34148/teknika.v12i3.678
Dede Kurniadi, Asri Mulyani, Diar Nur Rizky
{"title":"采用Android的天真贝斯算法,以早期症状为基础的Covid-19检测疾病","authors":"Dede Kurniadi, Asri Mulyani, Diar Nur Rizky","doi":"10.34148/teknika.v12i3.678","DOIUrl":null,"url":null,"abstract":"Data penelitian terakhir menunjukkan bahwa masyarakat merasa takut untuk melakukan pemeriksaan ke instansi kesehatan akibat kurangnya pengetahuan Covid-19, sehingga menyebabkan ketidak pedulian dalam aktivitas sehari-hari terhadap dampak dari situasi penyakit Covid-19. Oleh karena itu dibutuhkan sebuah aplikasi sistem deteksi gejala awal penyakit Covid-19 berbasis mobile. Tujuan dari penelitian ini membuat aplikasi sistem deteksi penyakit Covid-19 dengan menerapkan metode pengklasifikasian Naïve Bayes sehingga mempermudah pengguna dalam melakukan tes mandiri gejala awal Covid-19. Metode perancangan yang digunakan adalah Extreme Programming (XP) yang terdiri dari planning, analysis, design, implementation, dan maintenance. Data yang digunakan terdiri dari 2 dataset yaitu dataset untuk pengklasifikasian penyakit Covid-19 dengan jumlah data sebanyak 44.453 dan dataset untuk pengklasifikasian varian Covid-19 berjumlah 128.769. Penelitian ini melakukan 2 kali pemodelan menggunakan Split Data dengan perbandingan 5:5 untuk klasifikasi penyakit Covid-19 dan perbandingan 3:7 untuk klasifikasi varian Covid-19. Hasil penelitian ini berhasil membangun Sistem deteksi penyakit Covid-19 berdasarkan gejala awal menggunakan algoritma Naïve Bayes berbasis android dan telah mampu memprediksi penyakit Covid-19 ke dalam 4 class dengan nilai F1-Score yaitu Allergy 0,98, Cold 0,61, Covid 0,56, dan Flu 0,95, serta gejala yang paling berpengaruh pada class Allergy yaitu CS13 (Loss of taste) dengan nilai 0,50, class Cold yaitu CS3 (Tiredness) dengan nilai 0,52, class Covid yaitu CS12 (Difficulty breathing) dengan nilai 0,51, dan class Flu yaitu CS19 (Sneezing) dengan nilai 0,53, sistem yang dibangun juga mampu memprediksi varian Covid-19 ke dalam 3 class dengan nilai F1-Score yaitu alpha 0,85, delta 0,78, dan omicron 0,93, serta gejala yang paling berpengaruh pada class Alpha yaitu VS3 (Loss of appetite) dengan nilai 0,74, class Delta yaitu VS12 (Cough) dengan nilai 0,87, dan class Omicron yaitu VS10 (Sore throat) dengan nilai 0,67, juga aplikasi berhasil dan dapat dirancang dengan pendekatan Extreme Programming (XP).","PeriodicalId":52620,"journal":{"name":"Teknika","volume":"115 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sistem Deteksi Penyakit Covid-19 Berdasarkan Gejala Awal Menggunakan Algoritma Naïve Bayes Berbasis Android\",\"authors\":\"Dede Kurniadi, Asri Mulyani, Diar Nur Rizky\",\"doi\":\"10.34148/teknika.v12i3.678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data penelitian terakhir menunjukkan bahwa masyarakat merasa takut untuk melakukan pemeriksaan ke instansi kesehatan akibat kurangnya pengetahuan Covid-19, sehingga menyebabkan ketidak pedulian dalam aktivitas sehari-hari terhadap dampak dari situasi penyakit Covid-19. Oleh karena itu dibutuhkan sebuah aplikasi sistem deteksi gejala awal penyakit Covid-19 berbasis mobile. Tujuan dari penelitian ini membuat aplikasi sistem deteksi penyakit Covid-19 dengan menerapkan metode pengklasifikasian Naïve Bayes sehingga mempermudah pengguna dalam melakukan tes mandiri gejala awal Covid-19. Metode perancangan yang digunakan adalah Extreme Programming (XP) yang terdiri dari planning, analysis, design, implementation, dan maintenance. Data yang digunakan terdiri dari 2 dataset yaitu dataset untuk pengklasifikasian penyakit Covid-19 dengan jumlah data sebanyak 44.453 dan dataset untuk pengklasifikasian varian Covid-19 berjumlah 128.769. Penelitian ini melakukan 2 kali pemodelan menggunakan Split Data dengan perbandingan 5:5 untuk klasifikasi penyakit Covid-19 dan perbandingan 3:7 untuk klasifikasi varian Covid-19. Hasil penelitian ini berhasil membangun Sistem deteksi penyakit Covid-19 berdasarkan gejala awal menggunakan algoritma Naïve Bayes berbasis android dan telah mampu memprediksi penyakit Covid-19 ke dalam 4 class dengan nilai F1-Score yaitu Allergy 0,98, Cold 0,61, Covid 0,56, dan Flu 0,95, serta gejala yang paling berpengaruh pada class Allergy yaitu CS13 (Loss of taste) dengan nilai 0,50, class Cold yaitu CS3 (Tiredness) dengan nilai 0,52, class Covid yaitu CS12 (Difficulty breathing) dengan nilai 0,51, dan class Flu yaitu CS19 (Sneezing) dengan nilai 0,53, sistem yang dibangun juga mampu memprediksi varian Covid-19 ke dalam 3 class dengan nilai F1-Score yaitu alpha 0,85, delta 0,78, dan omicron 0,93, serta gejala yang paling berpengaruh pada class Alpha yaitu VS3 (Loss of appetite) dengan nilai 0,74, class Delta yaitu VS12 (Cough) dengan nilai 0,87, dan class Omicron yaitu VS10 (Sore throat) dengan nilai 0,67, juga aplikasi berhasil dan dapat dirancang dengan pendekatan Extreme Programming (XP).\",\"PeriodicalId\":52620,\"journal\":{\"name\":\"Teknika\",\"volume\":\"115 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Teknika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34148/teknika.v12i3.678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teknika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34148/teknika.v12i3.678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究数据表明,由于covid因此,它需要一个应用程序检测系统检测,以移动Covid-19为基础的疾病的早期症状。本研究的目的是建立一个Covid-19的检测系统,该系统采用了一种叫做Naive Bayes的方法,允许用户进行Covid-19早期症状的自我测试。使用的设计方法是一个极端程序,包括计划、分析、设计、执行和维护。即由2个数据集使用的数据为研究人员说这种疾病数据集Covid-19多达44453数据量和数据集来研究人员说Covid-19共有128769变体。这项研究做了2次用劈数据建模为Covid-19疾病分类和比较3:7比例5:5分类Covid-19变体。管用的研究成果建立Covid-19根据检测系统疾病早期症状使用基于android的天真贝叶斯算法,已经能够预测疾病Covid-19进4班的成绩F1-Score即Allergy 0.98、冷0,61 Covid 0,56、0.95流感以及20世纪最有影响力的症状的阶层Allergy CS13(丧失课,尝尝)花的价值之冷CS3 (0.52 Tiredness)的价值,班Covid CS12(困难呼吸和0,51价值),这个课的CS19 (Sneezing)流感0.53价值,建造的系统也能够预测成绩F1-Score Covid-19进入3级变种,即阿尔法0,85 0.78三角洲、omicron 0.93以及20世纪最有影响力的症状之阿尔法级VS3(丧失胃口好)三角洲0,74,课的价值和价值0.87 VS12(咳嗽),下午班omicron VS10(喉)0,67的价值,也成功应用程序和方法可以设计极限编程(XP)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sistem Deteksi Penyakit Covid-19 Berdasarkan Gejala Awal Menggunakan Algoritma Naïve Bayes Berbasis Android
Data penelitian terakhir menunjukkan bahwa masyarakat merasa takut untuk melakukan pemeriksaan ke instansi kesehatan akibat kurangnya pengetahuan Covid-19, sehingga menyebabkan ketidak pedulian dalam aktivitas sehari-hari terhadap dampak dari situasi penyakit Covid-19. Oleh karena itu dibutuhkan sebuah aplikasi sistem deteksi gejala awal penyakit Covid-19 berbasis mobile. Tujuan dari penelitian ini membuat aplikasi sistem deteksi penyakit Covid-19 dengan menerapkan metode pengklasifikasian Naïve Bayes sehingga mempermudah pengguna dalam melakukan tes mandiri gejala awal Covid-19. Metode perancangan yang digunakan adalah Extreme Programming (XP) yang terdiri dari planning, analysis, design, implementation, dan maintenance. Data yang digunakan terdiri dari 2 dataset yaitu dataset untuk pengklasifikasian penyakit Covid-19 dengan jumlah data sebanyak 44.453 dan dataset untuk pengklasifikasian varian Covid-19 berjumlah 128.769. Penelitian ini melakukan 2 kali pemodelan menggunakan Split Data dengan perbandingan 5:5 untuk klasifikasi penyakit Covid-19 dan perbandingan 3:7 untuk klasifikasi varian Covid-19. Hasil penelitian ini berhasil membangun Sistem deteksi penyakit Covid-19 berdasarkan gejala awal menggunakan algoritma Naïve Bayes berbasis android dan telah mampu memprediksi penyakit Covid-19 ke dalam 4 class dengan nilai F1-Score yaitu Allergy 0,98, Cold 0,61, Covid 0,56, dan Flu 0,95, serta gejala yang paling berpengaruh pada class Allergy yaitu CS13 (Loss of taste) dengan nilai 0,50, class Cold yaitu CS3 (Tiredness) dengan nilai 0,52, class Covid yaitu CS12 (Difficulty breathing) dengan nilai 0,51, dan class Flu yaitu CS19 (Sneezing) dengan nilai 0,53, sistem yang dibangun juga mampu memprediksi varian Covid-19 ke dalam 3 class dengan nilai F1-Score yaitu alpha 0,85, delta 0,78, dan omicron 0,93, serta gejala yang paling berpengaruh pada class Alpha yaitu VS3 (Loss of appetite) dengan nilai 0,74, class Delta yaitu VS12 (Cough) dengan nilai 0,87, dan class Omicron yaitu VS10 (Sore throat) dengan nilai 0,67, juga aplikasi berhasil dan dapat dirancang dengan pendekatan Extreme Programming (XP).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
22
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信