基于2022年门源地震的铁路桥梁震害易损性实证分析

IF 0.2 Q4 ENGINEERING, CIVIL
Jing He, Yong Huang
{"title":"基于2022年门源地震的铁路桥梁震害易损性实证分析","authors":"Jing He, Yong Huang","doi":"10.14311/cej.2023.03.0028","DOIUrl":null,"url":null,"abstract":"A 6.9 magnitude earthquake at a depth of 10 km struck Menyuan County, Haibei Prefecture, Qinghai Province, China, on January 8, 2022. This earthquake damaged some railway bridges on the Lanzhou-Xinjiang Passenger Dedicated Line. This study combines relevant historical earthquake damage experience, considers the effects of earthquake intensity, site soil classification, superstructure type, foundation failure factor, number of spans, and total bridge length, and develops empirical formulas for seismic damage prediction of railway bridges using ordinal logistic regression model in SPSS software. The seismic damage matrix, as were the anticipated multi-intensity mean damage index and the empirical vulnerability curve based on the two-parameter lognormal distribution function, were generated on this basis. According to the conclusions, although the suggested particular equations and vulnerability curves do not apply to the remainder of the region owing to geographical uniqueness, the technical approach is valid. It may be used as a reference for seismic damage prediction and vulnerability evaluation in other regions. The empirical vulnerability analysis based on the earthquake damage prediction matrix derived from the regression analysis can provide reasonable and fast forecasts before the next earthquake.","PeriodicalId":42993,"journal":{"name":"Civil Engineering Journal-Stavebni Obzor","volume":"1 1","pages":"0"},"PeriodicalIF":0.2000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EMPIRICAL VULNERABILITY ANALYSIS OF RAILWAY BRIDGE SEISMIC DAMAGE BASED ON 2022 MENYUAN EARTHQUAKE\",\"authors\":\"Jing He, Yong Huang\",\"doi\":\"10.14311/cej.2023.03.0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 6.9 magnitude earthquake at a depth of 10 km struck Menyuan County, Haibei Prefecture, Qinghai Province, China, on January 8, 2022. This earthquake damaged some railway bridges on the Lanzhou-Xinjiang Passenger Dedicated Line. This study combines relevant historical earthquake damage experience, considers the effects of earthquake intensity, site soil classification, superstructure type, foundation failure factor, number of spans, and total bridge length, and develops empirical formulas for seismic damage prediction of railway bridges using ordinal logistic regression model in SPSS software. The seismic damage matrix, as were the anticipated multi-intensity mean damage index and the empirical vulnerability curve based on the two-parameter lognormal distribution function, were generated on this basis. According to the conclusions, although the suggested particular equations and vulnerability curves do not apply to the remainder of the region owing to geographical uniqueness, the technical approach is valid. It may be used as a reference for seismic damage prediction and vulnerability evaluation in other regions. The empirical vulnerability analysis based on the earthquake damage prediction matrix derived from the regression analysis can provide reasonable and fast forecasts before the next earthquake.\",\"PeriodicalId\":42993,\"journal\":{\"name\":\"Civil Engineering Journal-Stavebni Obzor\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil Engineering Journal-Stavebni Obzor\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14311/cej.2023.03.0028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Journal-Stavebni Obzor","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/cej.2023.03.0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

2022年1月8日,中国青海省海北地区门源县发生6.9级地震,震源深度10公里。这次地震损坏了兰新客运专线上的一些铁路桥。本研究结合相关历史地震震害经验,考虑地震烈度、场地土壤分类、上部结构类型、基础破坏因子、跨数、桥梁总长度等因素的影响,利用SPSS软件中的有序逻辑回归模型,建立铁路桥梁震害预测的经验公式。在此基础上生成地震损伤矩阵、预期多烈度平均损伤指数和基于双参数对数正态分布函数的经验易损性曲线。根据结论,虽然由于地理独特性,建议的特定方程和脆弱性曲线不适用于该区域的其余部分,但技术方法是有效的。可为其他地区的震害预测和易损性评价提供参考。基于回归分析得到的震害预测矩阵的经验易损性分析可以在下次地震发生前提供合理、快速的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EMPIRICAL VULNERABILITY ANALYSIS OF RAILWAY BRIDGE SEISMIC DAMAGE BASED ON 2022 MENYUAN EARTHQUAKE
A 6.9 magnitude earthquake at a depth of 10 km struck Menyuan County, Haibei Prefecture, Qinghai Province, China, on January 8, 2022. This earthquake damaged some railway bridges on the Lanzhou-Xinjiang Passenger Dedicated Line. This study combines relevant historical earthquake damage experience, considers the effects of earthquake intensity, site soil classification, superstructure type, foundation failure factor, number of spans, and total bridge length, and develops empirical formulas for seismic damage prediction of railway bridges using ordinal logistic regression model in SPSS software. The seismic damage matrix, as were the anticipated multi-intensity mean damage index and the empirical vulnerability curve based on the two-parameter lognormal distribution function, were generated on this basis. According to the conclusions, although the suggested particular equations and vulnerability curves do not apply to the remainder of the region owing to geographical uniqueness, the technical approach is valid. It may be used as a reference for seismic damage prediction and vulnerability evaluation in other regions. The empirical vulnerability analysis based on the earthquake damage prediction matrix derived from the regression analysis can provide reasonable and fast forecasts before the next earthquake.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
38
审稿时长
10 weeks
期刊介绍: The Civil Engineering Journal’s objective is to present the latest progress in research and development in civil engineering. It is desired to provide free and up to date information regarding innovations in various civil engineering fields. The Civil Engineering Journal is opened for all authors worldwide that follow the journal‘s requirements (theme, template and affirmative reviews). The journal is administrated by a public university (Civil Engineering faculty, Czech Technical University in Prague) and therefore publishing is free of charge with no exceptions. Main journal themes correspond to specialization of the Civil Engineering Faculty, CTU in Prague. Namely: Applied informatics Architecture Building Constructions and Municipal Engineering Building structures Building materials and components Building physics, building services Construction technology Construction management and economics Geodesy, Cartography, GIS Geotechnics Hydraulics and hydrology Hydraulic structures Indoor environmental and building services engineering Landscape water conservation Road and railway structures Sanitary and ecological engineering Structural mechanics Urban facility management Urban design, Town and regional planning Water management, Water structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信