{"title":"面向自动驾驶的城市环境语义分割改进Deeplabv3+模型","authors":"Wang Wang, Hua He, Changsong Ma","doi":"10.15837/ijccc.2023.6.5879","DOIUrl":null,"url":null,"abstract":"This paper proposes an improved Deeplabv3+ model for semantic segmentation of urban scenes targeting autonomous driving applications. A high-quality semantic segmentation dataset is constructed from 2,967 manually labeled aerial images captured at 200m height with a 5-eye camera. The images contain 5 classes - buildings, vegetation, ground, lake and playgrounds. The improved Deeplabv3+ network enriches high-level semantics by replacing max pooling with depthwise separable convolutions. Dilated convolutions extract multi-scale features to avoid overfitting. Experiments demonstrate that the model achieves an overall mean IoU of 0.87 on the test set, with IoU scores of 0.90, 0.92 and 0.94 on buildings, vegetation and water respectively. The model shows promising results for extracting semantic information from complex urban environments to support navigation for autonomous vehicles.","PeriodicalId":54970,"journal":{"name":"International Journal of Computers Communications & Control","volume":"36 17","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Deeplabv3+ Model for Semantic Segmentation of Urban Environments Targeting Autonomous Driving\",\"authors\":\"Wang Wang, Hua He, Changsong Ma\",\"doi\":\"10.15837/ijccc.2023.6.5879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an improved Deeplabv3+ model for semantic segmentation of urban scenes targeting autonomous driving applications. A high-quality semantic segmentation dataset is constructed from 2,967 manually labeled aerial images captured at 200m height with a 5-eye camera. The images contain 5 classes - buildings, vegetation, ground, lake and playgrounds. The improved Deeplabv3+ network enriches high-level semantics by replacing max pooling with depthwise separable convolutions. Dilated convolutions extract multi-scale features to avoid overfitting. Experiments demonstrate that the model achieves an overall mean IoU of 0.87 on the test set, with IoU scores of 0.90, 0.92 and 0.94 on buildings, vegetation and water respectively. The model shows promising results for extracting semantic information from complex urban environments to support navigation for autonomous vehicles.\",\"PeriodicalId\":54970,\"journal\":{\"name\":\"International Journal of Computers Communications & Control\",\"volume\":\"36 17\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computers Communications & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15837/ijccc.2023.6.5879\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computers Communications & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15837/ijccc.2023.6.5879","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
An Improved Deeplabv3+ Model for Semantic Segmentation of Urban Environments Targeting Autonomous Driving
This paper proposes an improved Deeplabv3+ model for semantic segmentation of urban scenes targeting autonomous driving applications. A high-quality semantic segmentation dataset is constructed from 2,967 manually labeled aerial images captured at 200m height with a 5-eye camera. The images contain 5 classes - buildings, vegetation, ground, lake and playgrounds. The improved Deeplabv3+ network enriches high-level semantics by replacing max pooling with depthwise separable convolutions. Dilated convolutions extract multi-scale features to avoid overfitting. Experiments demonstrate that the model achieves an overall mean IoU of 0.87 on the test set, with IoU scores of 0.90, 0.92 and 0.94 on buildings, vegetation and water respectively. The model shows promising results for extracting semantic information from complex urban environments to support navigation for autonomous vehicles.
期刊介绍:
International Journal of Computers Communications & Control is directed to the international communities of scientific researchers in computers, communications and control, from the universities, research units and industry. To differentiate from other similar journals, the editorial policy of IJCCC encourages the submission of original scientific papers that focus on the integration of the 3 "C" (Computing, Communications, Control).
In particular, the following topics are expected to be addressed by authors:
(1) Integrated solutions in computer-based control and communications;
(2) Computational intelligence methods & Soft computing (with particular emphasis on fuzzy logic-based methods, computing with words, ANN, evolutionary computing, collective/swarm intelligence);
(3) Advanced decision support systems (with particular emphasis on the usage of combined solvers and/or web technologies).