{"title":"自动识别系统:生物图像迁移学习中主动学习提取知识的理论与实践","authors":"Rodica Sobolu, Liana Stanca, Simona Aurelia Bodog","doi":"10.15837/ijccc.2023.6.5728","DOIUrl":null,"url":null,"abstract":"In our research, we propose a model that leverages transfer learning and active learning techniques to accumulate knowledge and effectively solve complex problems in the field of artificial intelligence. This model operates within a parallel learning paradigm, aiming to mimic the continuous learning and improvement observed in human beings. To facilitate knowledge accumulation, we introduce a convolutional deep classification auto encoder that extracts spatially localized features from images. This enhances the model’s ability to extract relevant information. Additionally, we propose a learning classification system based on a code fragment, enabling effective representation and transfer of knowledge across different domains. Our research culminates in a theoretical and practical prototype for active learning-based knowledge extraction in various living organisms, including humans, plants, and animals. This knowledge extraction is achieved through image-based learning transfer, focusing on advancing activity recognition in image processing. Experimental results confirm that our method outperforms both baseline approaches and state-of-the-art convolutional neural network methods, underscoring its effectiveness and potential.","PeriodicalId":54970,"journal":{"name":"International Journal of Computers Communications & Control","volume":"34 3","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Recognition Systems: Theoretical and Practical Implementation of Active Learning for Extracting Knowledge in Image-based Transfer Learning of Living Organisms\",\"authors\":\"Rodica Sobolu, Liana Stanca, Simona Aurelia Bodog\",\"doi\":\"10.15837/ijccc.2023.6.5728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our research, we propose a model that leverages transfer learning and active learning techniques to accumulate knowledge and effectively solve complex problems in the field of artificial intelligence. This model operates within a parallel learning paradigm, aiming to mimic the continuous learning and improvement observed in human beings. To facilitate knowledge accumulation, we introduce a convolutional deep classification auto encoder that extracts spatially localized features from images. This enhances the model’s ability to extract relevant information. Additionally, we propose a learning classification system based on a code fragment, enabling effective representation and transfer of knowledge across different domains. Our research culminates in a theoretical and practical prototype for active learning-based knowledge extraction in various living organisms, including humans, plants, and animals. This knowledge extraction is achieved through image-based learning transfer, focusing on advancing activity recognition in image processing. Experimental results confirm that our method outperforms both baseline approaches and state-of-the-art convolutional neural network methods, underscoring its effectiveness and potential.\",\"PeriodicalId\":54970,\"journal\":{\"name\":\"International Journal of Computers Communications & Control\",\"volume\":\"34 3\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computers Communications & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15837/ijccc.2023.6.5728\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computers Communications & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15837/ijccc.2023.6.5728","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Automated Recognition Systems: Theoretical and Practical Implementation of Active Learning for Extracting Knowledge in Image-based Transfer Learning of Living Organisms
In our research, we propose a model that leverages transfer learning and active learning techniques to accumulate knowledge and effectively solve complex problems in the field of artificial intelligence. This model operates within a parallel learning paradigm, aiming to mimic the continuous learning and improvement observed in human beings. To facilitate knowledge accumulation, we introduce a convolutional deep classification auto encoder that extracts spatially localized features from images. This enhances the model’s ability to extract relevant information. Additionally, we propose a learning classification system based on a code fragment, enabling effective representation and transfer of knowledge across different domains. Our research culminates in a theoretical and practical prototype for active learning-based knowledge extraction in various living organisms, including humans, plants, and animals. This knowledge extraction is achieved through image-based learning transfer, focusing on advancing activity recognition in image processing. Experimental results confirm that our method outperforms both baseline approaches and state-of-the-art convolutional neural network methods, underscoring its effectiveness and potential.
期刊介绍:
International Journal of Computers Communications & Control is directed to the international communities of scientific researchers in computers, communications and control, from the universities, research units and industry. To differentiate from other similar journals, the editorial policy of IJCCC encourages the submission of original scientific papers that focus on the integration of the 3 "C" (Computing, Communications, Control).
In particular, the following topics are expected to be addressed by authors:
(1) Integrated solutions in computer-based control and communications;
(2) Computational intelligence methods & Soft computing (with particular emphasis on fuzzy logic-based methods, computing with words, ANN, evolutionary computing, collective/swarm intelligence);
(3) Advanced decision support systems (with particular emphasis on the usage of combined solvers and/or web technologies).