{"title":"基于深度强化学习的物联网数据处理与调度","authors":"Yuchuan Jiang, Zhangjun Wang, ZhiXiong Jin","doi":"10.15837/ijccc.2023.6.5998","DOIUrl":null,"url":null,"abstract":"With the continuous integration of IoT technology and information technology, edge computing, as an emerging computing paradigm, makes full use of terminals to process and analyse real-time data. The explosion of Internet of Things (IoT) devices has created challenges for traditional cloud-based data processing models due to high latency and availability requirements. This paper proposes a new edge computation-based framework for iot data processing and scheduling using deep reinforcement learning. The system architecture incorporates distributed iot data access, realtime processing, and an intelligent scheduler based on Deep q networks (DQN). A large number of experiments show that compared with traditional scheduling methods, the average task completion time is reduced by 20% and resource utilization is increased by 15%. The unique integration of edge computing and deep reinforcement learning provides a flexible and efficient platform for lowlatency iot applications. Key results obtained from testing the proposed system, such as reduced task completion time and increased resource utilization.","PeriodicalId":54970,"journal":{"name":"International Journal of Computers Communications & Control","volume":"11 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iot Data Processing and Scheduling Based on Deep Reinforcement Learning\",\"authors\":\"Yuchuan Jiang, Zhangjun Wang, ZhiXiong Jin\",\"doi\":\"10.15837/ijccc.2023.6.5998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the continuous integration of IoT technology and information technology, edge computing, as an emerging computing paradigm, makes full use of terminals to process and analyse real-time data. The explosion of Internet of Things (IoT) devices has created challenges for traditional cloud-based data processing models due to high latency and availability requirements. This paper proposes a new edge computation-based framework for iot data processing and scheduling using deep reinforcement learning. The system architecture incorporates distributed iot data access, realtime processing, and an intelligent scheduler based on Deep q networks (DQN). A large number of experiments show that compared with traditional scheduling methods, the average task completion time is reduced by 20% and resource utilization is increased by 15%. The unique integration of edge computing and deep reinforcement learning provides a flexible and efficient platform for lowlatency iot applications. Key results obtained from testing the proposed system, such as reduced task completion time and increased resource utilization.\",\"PeriodicalId\":54970,\"journal\":{\"name\":\"International Journal of Computers Communications & Control\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computers Communications & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15837/ijccc.2023.6.5998\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computers Communications & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15837/ijccc.2023.6.5998","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Iot Data Processing and Scheduling Based on Deep Reinforcement Learning
With the continuous integration of IoT technology and information technology, edge computing, as an emerging computing paradigm, makes full use of terminals to process and analyse real-time data. The explosion of Internet of Things (IoT) devices has created challenges for traditional cloud-based data processing models due to high latency and availability requirements. This paper proposes a new edge computation-based framework for iot data processing and scheduling using deep reinforcement learning. The system architecture incorporates distributed iot data access, realtime processing, and an intelligent scheduler based on Deep q networks (DQN). A large number of experiments show that compared with traditional scheduling methods, the average task completion time is reduced by 20% and resource utilization is increased by 15%. The unique integration of edge computing and deep reinforcement learning provides a flexible and efficient platform for lowlatency iot applications. Key results obtained from testing the proposed system, such as reduced task completion time and increased resource utilization.
期刊介绍:
International Journal of Computers Communications & Control is directed to the international communities of scientific researchers in computers, communications and control, from the universities, research units and industry. To differentiate from other similar journals, the editorial policy of IJCCC encourages the submission of original scientific papers that focus on the integration of the 3 "C" (Computing, Communications, Control).
In particular, the following topics are expected to be addressed by authors:
(1) Integrated solutions in computer-based control and communications;
(2) Computational intelligence methods & Soft computing (with particular emphasis on fuzzy logic-based methods, computing with words, ANN, evolutionary computing, collective/swarm intelligence);
(3) Advanced decision support systems (with particular emphasis on the usage of combined solvers and/or web technologies).