Venkatesan Muthukumar, R. Sivakami, Vinoth Kumar Venkatesan, J. Balajee, T.R. Mahesh, E. Mohan, B. Swapna
{"title":"使用联邦学习和基于区块链的安全策略优化物联网基础设施的异构性","authors":"Venkatesan Muthukumar, R. Sivakami, Vinoth Kumar Venkatesan, J. Balajee, T.R. Mahesh, E. Mohan, B. Swapna","doi":"10.15837/ijccc.2023.6.5890","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) and associated capabilities are becoming indispensable in the planning, operation, and administration of intricate systems of all sizes. High-end learning solutions that go beyond the boundaries of the problem are necessary for addressing the variety of communication concerns (compatibility, secure communication, etc.) in IoT settings. Building machine learning (ML) networks from disparate data sources is a cutting-edge practice known as Federated Learning (FL). In this article, we implement FL between edge-based servers and devices in a sparsely populated cloud to facilitate cohesive learning and the storage of critical information in smart IoT systems. FL enables collaborative training from a common model by aggregating smaller unit models via regulated edge network participants. Further, all the susceptible device’s information and sensitive message transactions are addressed via blockchain technology. Thus, a blockchain-based security mechanism is integrated to secure user privacy and facilitate widespread practical adoption. Finally, a comparison is made between the proposed model and the three best free, open-source Federated Learning models already in use (FedPD, FedProx, and FedAvg). In terms of statistical, and data heterogeneity (>70% SDI, >97% accuracy), the experimental findings suggest that the proposed model performs better than the existing techniques.","PeriodicalId":54970,"journal":{"name":"International Journal of Computers Communications & Control","volume":"45 S3","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Heterogeneity in IoT Infra Using Federated Learning and Blockchain-based Security Strategies\",\"authors\":\"Venkatesan Muthukumar, R. Sivakami, Vinoth Kumar Venkatesan, J. Balajee, T.R. Mahesh, E. Mohan, B. Swapna\",\"doi\":\"10.15837/ijccc.2023.6.5890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Things (IoT) and associated capabilities are becoming indispensable in the planning, operation, and administration of intricate systems of all sizes. High-end learning solutions that go beyond the boundaries of the problem are necessary for addressing the variety of communication concerns (compatibility, secure communication, etc.) in IoT settings. Building machine learning (ML) networks from disparate data sources is a cutting-edge practice known as Federated Learning (FL). In this article, we implement FL between edge-based servers and devices in a sparsely populated cloud to facilitate cohesive learning and the storage of critical information in smart IoT systems. FL enables collaborative training from a common model by aggregating smaller unit models via regulated edge network participants. Further, all the susceptible device’s information and sensitive message transactions are addressed via blockchain technology. Thus, a blockchain-based security mechanism is integrated to secure user privacy and facilitate widespread practical adoption. Finally, a comparison is made between the proposed model and the three best free, open-source Federated Learning models already in use (FedPD, FedProx, and FedAvg). In terms of statistical, and data heterogeneity (>70% SDI, >97% accuracy), the experimental findings suggest that the proposed model performs better than the existing techniques.\",\"PeriodicalId\":54970,\"journal\":{\"name\":\"International Journal of Computers Communications & Control\",\"volume\":\"45 S3\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computers Communications & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15837/ijccc.2023.6.5890\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computers Communications & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15837/ijccc.2023.6.5890","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Optimizing Heterogeneity in IoT Infra Using Federated Learning and Blockchain-based Security Strategies
The Internet of Things (IoT) and associated capabilities are becoming indispensable in the planning, operation, and administration of intricate systems of all sizes. High-end learning solutions that go beyond the boundaries of the problem are necessary for addressing the variety of communication concerns (compatibility, secure communication, etc.) in IoT settings. Building machine learning (ML) networks from disparate data sources is a cutting-edge practice known as Federated Learning (FL). In this article, we implement FL between edge-based servers and devices in a sparsely populated cloud to facilitate cohesive learning and the storage of critical information in smart IoT systems. FL enables collaborative training from a common model by aggregating smaller unit models via regulated edge network participants. Further, all the susceptible device’s information and sensitive message transactions are addressed via blockchain technology. Thus, a blockchain-based security mechanism is integrated to secure user privacy and facilitate widespread practical adoption. Finally, a comparison is made between the proposed model and the three best free, open-source Federated Learning models already in use (FedPD, FedProx, and FedAvg). In terms of statistical, and data heterogeneity (>70% SDI, >97% accuracy), the experimental findings suggest that the proposed model performs better than the existing techniques.
期刊介绍:
International Journal of Computers Communications & Control is directed to the international communities of scientific researchers in computers, communications and control, from the universities, research units and industry. To differentiate from other similar journals, the editorial policy of IJCCC encourages the submission of original scientific papers that focus on the integration of the 3 "C" (Computing, Communications, Control).
In particular, the following topics are expected to be addressed by authors:
(1) Integrated solutions in computer-based control and communications;
(2) Computational intelligence methods & Soft computing (with particular emphasis on fuzzy logic-based methods, computing with words, ANN, evolutionary computing, collective/swarm intelligence);
(3) Advanced decision support systems (with particular emphasis on the usage of combined solvers and/or web technologies).