{"title":"用循环矩阵求解多项式的块同构问题","authors":"Yasufumi Hashimoto","doi":"10.1587/transfun.2022cip0002","DOIUrl":null,"url":null,"abstract":"The problem of Isomorphism of Polynomials (IP problem) is known to be important to study the security of multivariate public key cryptosystems, one of the major candidates of post-quantum cryptography, against key recovery attacks. In these years, several schemes based on the IP problem itself or its generalization have been proposed. At PQCrypto 2020, Santoso introduced a generalization of the problem of Isomorphism of Polynomials, called the problem of Blockwise Isomorphism of Polynomials (BIP problem), and proposed a new Diffie-Hellman type encryption scheme based on this problem with Circulant matrices (BIPC problem). Quite recently, Ikematsu et al. proposed an attack called the linear stack attack to recover an equivalent key of Santoso's encryption scheme. While this attack reduced the security of the scheme, it does not contribute to solving the BIPC problem itself. In the present paper, we describe how to solve the BIPC problem directly by simplifying the BIPC problem due to the conjugation property of circulant matrices. In fact, we experimentally solved the BIPC problem with the parameter, which has 256 bit security by Santoso's security analysis and has 72.7bit security against the linear stack attack, by about 10 minutes.","PeriodicalId":55003,"journal":{"name":"Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences","volume":"78 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving the Problem of Blockwise Isomorphism of Polynomials with Circulant Matrices\",\"authors\":\"Yasufumi Hashimoto\",\"doi\":\"10.1587/transfun.2022cip0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of Isomorphism of Polynomials (IP problem) is known to be important to study the security of multivariate public key cryptosystems, one of the major candidates of post-quantum cryptography, against key recovery attacks. In these years, several schemes based on the IP problem itself or its generalization have been proposed. At PQCrypto 2020, Santoso introduced a generalization of the problem of Isomorphism of Polynomials, called the problem of Blockwise Isomorphism of Polynomials (BIP problem), and proposed a new Diffie-Hellman type encryption scheme based on this problem with Circulant matrices (BIPC problem). Quite recently, Ikematsu et al. proposed an attack called the linear stack attack to recover an equivalent key of Santoso's encryption scheme. While this attack reduced the security of the scheme, it does not contribute to solving the BIPC problem itself. In the present paper, we describe how to solve the BIPC problem directly by simplifying the BIPC problem due to the conjugation property of circulant matrices. In fact, we experimentally solved the BIPC problem with the parameter, which has 256 bit security by Santoso's security analysis and has 72.7bit security against the linear stack attack, by about 10 minutes.\",\"PeriodicalId\":55003,\"journal\":{\"name\":\"Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1587/transfun.2022cip0002\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transfun.2022cip0002","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Solving the Problem of Blockwise Isomorphism of Polynomials with Circulant Matrices
The problem of Isomorphism of Polynomials (IP problem) is known to be important to study the security of multivariate public key cryptosystems, one of the major candidates of post-quantum cryptography, against key recovery attacks. In these years, several schemes based on the IP problem itself or its generalization have been proposed. At PQCrypto 2020, Santoso introduced a generalization of the problem of Isomorphism of Polynomials, called the problem of Blockwise Isomorphism of Polynomials (BIP problem), and proposed a new Diffie-Hellman type encryption scheme based on this problem with Circulant matrices (BIPC problem). Quite recently, Ikematsu et al. proposed an attack called the linear stack attack to recover an equivalent key of Santoso's encryption scheme. While this attack reduced the security of the scheme, it does not contribute to solving the BIPC problem itself. In the present paper, we describe how to solve the BIPC problem directly by simplifying the BIPC problem due to the conjugation property of circulant matrices. In fact, we experimentally solved the BIPC problem with the parameter, which has 256 bit security by Santoso's security analysis and has 72.7bit security against the linear stack attack, by about 10 minutes.
期刊介绍:
Includes reports on research, developments, and examinations performed by the Society''s members for the specific fields shown in the category list such as detailed below, the contents of which may advance the development of science and industry:
(1) Reports on new theories, experiments with new contents, or extensions of and supplements to conventional theories and experiments.
(2) Reports on development of measurement technology and various applied technologies.
(3) Reports on the planning, design, manufacture, testing, or operation of facilities, machinery, parts, materials, etc.
(4) Presentation of new methods, suggestion of new angles, ideas, systematization, software, or any new facts regarding the above.