{"title":"基于决策pso的高斯AOMDV (DPSO-GAOMDV)路由协议:随机车辆自组网中动态交通条件下的智能路由","authors":"M. Kayalvizhi, S. Geetha","doi":"10.22247/ijcna/2023/223430","DOIUrl":null,"url":null,"abstract":"– Vehicular Ad Hoc Networks (VANETs) have gained prominence in vehicular communication due to their potential to enhance road safety, traffic efficiency, and infotainment services. However, the evolution of Stochastic VANETs (SVANETs) has introduced a layer of uncertainty, where vehicular interactions are influenced by dynamic factors such as varying traffic conditions, changing communication environments, and unpredictable link qualities. Routing within SVANETs presents distinct challenges stemming from the stochastic nature of the environment. Traditional routing protocols struggle to maintain reliable connections amidst fluctuating link conditions, leading to increased latency, dropped packets, and inefficient route utilization. The novel “Decisiveness PSO-Based Gaussian AOMDV (DPSO-GAOMDV) Routing Protocol” is introduced to address these challenges. This innovative protocol combines the predictive power of Gaussian-Anticipatory On-Demand Distance Vector (GAOMDV) routing with the dynamic adaptability of Particle Swarm Optimization (PSO). GAOMDV’s ability to anticipate link stability using Gaussian distribution is integrated with DPSO’s agility in optimizing routing decisions. The simulation phase of the study evaluates the DPSO-GAOMDV protocol under various stochastic vehicular scenarios. The protocol’s performance is thoroughly analyzed by emulating real-world traffic conditions and communication dynamics. The simulation results underscore the protocol’s efficacy in reducing route maintenance overhead, improved packet delivery ratios, and enhanced network stability. The predictive insights and dynamic optimization mechanisms showcase its potential to drive innovative, resilient and efficient routing strategies in the face of stochastic vehicular conditions.","PeriodicalId":36485,"journal":{"name":"International Journal of Computer Networks and Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decisiveness PSO-Based Gaussian AOMDV (DPSO-GAOMDV) Routing Protocol: Smart Routing for Dynamic Traffic Conditions in Stochastic Vehicular Ad Hoc Network\",\"authors\":\"M. Kayalvizhi, S. Geetha\",\"doi\":\"10.22247/ijcna/2023/223430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"– Vehicular Ad Hoc Networks (VANETs) have gained prominence in vehicular communication due to their potential to enhance road safety, traffic efficiency, and infotainment services. However, the evolution of Stochastic VANETs (SVANETs) has introduced a layer of uncertainty, where vehicular interactions are influenced by dynamic factors such as varying traffic conditions, changing communication environments, and unpredictable link qualities. Routing within SVANETs presents distinct challenges stemming from the stochastic nature of the environment. Traditional routing protocols struggle to maintain reliable connections amidst fluctuating link conditions, leading to increased latency, dropped packets, and inefficient route utilization. The novel “Decisiveness PSO-Based Gaussian AOMDV (DPSO-GAOMDV) Routing Protocol” is introduced to address these challenges. This innovative protocol combines the predictive power of Gaussian-Anticipatory On-Demand Distance Vector (GAOMDV) routing with the dynamic adaptability of Particle Swarm Optimization (PSO). GAOMDV’s ability to anticipate link stability using Gaussian distribution is integrated with DPSO’s agility in optimizing routing decisions. The simulation phase of the study evaluates the DPSO-GAOMDV protocol under various stochastic vehicular scenarios. The protocol’s performance is thoroughly analyzed by emulating real-world traffic conditions and communication dynamics. The simulation results underscore the protocol’s efficacy in reducing route maintenance overhead, improved packet delivery ratios, and enhanced network stability. The predictive insights and dynamic optimization mechanisms showcase its potential to drive innovative, resilient and efficient routing strategies in the face of stochastic vehicular conditions.\",\"PeriodicalId\":36485,\"journal\":{\"name\":\"International Journal of Computer Networks and Applications\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Networks and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22247/ijcna/2023/223430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Networks and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22247/ijcna/2023/223430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Decisiveness PSO-Based Gaussian AOMDV (DPSO-GAOMDV) Routing Protocol: Smart Routing for Dynamic Traffic Conditions in Stochastic Vehicular Ad Hoc Network
– Vehicular Ad Hoc Networks (VANETs) have gained prominence in vehicular communication due to their potential to enhance road safety, traffic efficiency, and infotainment services. However, the evolution of Stochastic VANETs (SVANETs) has introduced a layer of uncertainty, where vehicular interactions are influenced by dynamic factors such as varying traffic conditions, changing communication environments, and unpredictable link qualities. Routing within SVANETs presents distinct challenges stemming from the stochastic nature of the environment. Traditional routing protocols struggle to maintain reliable connections amidst fluctuating link conditions, leading to increased latency, dropped packets, and inefficient route utilization. The novel “Decisiveness PSO-Based Gaussian AOMDV (DPSO-GAOMDV) Routing Protocol” is introduced to address these challenges. This innovative protocol combines the predictive power of Gaussian-Anticipatory On-Demand Distance Vector (GAOMDV) routing with the dynamic adaptability of Particle Swarm Optimization (PSO). GAOMDV’s ability to anticipate link stability using Gaussian distribution is integrated with DPSO’s agility in optimizing routing decisions. The simulation phase of the study evaluates the DPSO-GAOMDV protocol under various stochastic vehicular scenarios. The protocol’s performance is thoroughly analyzed by emulating real-world traffic conditions and communication dynamics. The simulation results underscore the protocol’s efficacy in reducing route maintenance overhead, improved packet delivery ratios, and enhanced network stability. The predictive insights and dynamic optimization mechanisms showcase its potential to drive innovative, resilient and efficient routing strategies in the face of stochastic vehicular conditions.