{"title":"基于易损性曲线的钢筋混凝土结构非规则损伤评价","authors":"Giovanni Smiroldo, Marco Fasan, Chiara Bedon","doi":"10.21595/vp.2023.23433","DOIUrl":null,"url":null,"abstract":"The present study explores the seismic performance and the expected structural damage in reinforced concrete (RC) frames with progressively increasing in-plan and in-height non-regularity. To this aim, four three-dimensional (3D) buildings characterised by different regularity levels are taken into account. The structures are subjected to seismic input consisting of unscaled real ground motion records, and non-linear dynamic analyses are performed in the Cloud Analysis framework, represented by three different intensity measures (IMs). To evaluate the effect of structural non-regularity, fragility curves are derived based on linear regression models.","PeriodicalId":262664,"journal":{"name":"Vibroengineering PROCEDIA","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-regularity damage evaluation in reinforced concrete structures via fragility curves\",\"authors\":\"Giovanni Smiroldo, Marco Fasan, Chiara Bedon\",\"doi\":\"10.21595/vp.2023.23433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study explores the seismic performance and the expected structural damage in reinforced concrete (RC) frames with progressively increasing in-plan and in-height non-regularity. To this aim, four three-dimensional (3D) buildings characterised by different regularity levels are taken into account. The structures are subjected to seismic input consisting of unscaled real ground motion records, and non-linear dynamic analyses are performed in the Cloud Analysis framework, represented by three different intensity measures (IMs). To evaluate the effect of structural non-regularity, fragility curves are derived based on linear regression models.\",\"PeriodicalId\":262664,\"journal\":{\"name\":\"Vibroengineering PROCEDIA\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibroengineering PROCEDIA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21595/vp.2023.23433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibroengineering PROCEDIA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/vp.2023.23433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-regularity damage evaluation in reinforced concrete structures via fragility curves
The present study explores the seismic performance and the expected structural damage in reinforced concrete (RC) frames with progressively increasing in-plan and in-height non-regularity. To this aim, four three-dimensional (3D) buildings characterised by different regularity levels are taken into account. The structures are subjected to seismic input consisting of unscaled real ground motion records, and non-linear dynamic analyses are performed in the Cloud Analysis framework, represented by three different intensity measures (IMs). To evaluate the effect of structural non-regularity, fragility curves are derived based on linear regression models.