{"title":"采用不同模型的负刚度结构对座椅悬架进行了新的设计","authors":"Huan Yuan, Hongwei Li, Wei Lu","doi":"10.21595/vp.2023.23403","DOIUrl":null,"url":null,"abstract":"Three models of seat suspension using the negative stiffness structure including steel springs (SS), roller springs (RS), and tuned mass damper (TMD) are proposed and studied to improve the driver's seat ride comfort. Based on the dynamic models of the SS, RS, and TMD, their isolation efficiency and driver’s ride comfort are evaluated via two indexes of the root mean square displacement and acceleration of the seat (<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mi>z</mml:mi></mml:mrow><mml:mrow><mml:mi>w</mml:mi><mml:mi>s</mml:mi></mml:mrow></mml:msub></mml:math> and <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mi>a</mml:mi></mml:mrow><mml:mrow><mml:mi>w</mml:mi><mml:mi>s</mml:mi></mml:mrow></mml:msub></mml:math>) under two excitations of the random road surface and bumpy road surface. The results show that under the random road surface, the <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mi>z</mml:mi></mml:mrow><mml:mrow><mml:mi>w</mml:mi><mml:mi>s</mml:mi></mml:mrow></mml:msub></mml:math> and <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mi>a</mml:mi></mml:mrow><mml:mrow><mml:mi>w</mml:mi><mml:mi>s</mml:mi></mml:mrow></mml:msub></mml:math> with the seat's RS are reduced by 10.31 % and 20.32 % in comparison with the seat’s SS; whereas the <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mi>z</mml:mi></mml:mrow><mml:mrow><mml:mi>w</mml:mi><mml:mi>s</mml:mi></mml:mrow></mml:msub></mml:math> and <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mi>a</mml:mi></mml:mrow><mml:mrow><mml:mi>w</mml:mi><mml:mi>s</mml:mi></mml:mrow></mml:msub></mml:math> with the seat's TMD are smaller than that of the seat's RS by 19.15 % and 26.13 %; and the seat’s SS by 27.49 % and 41.15 %, respectively. Besides, the seat's displacement and acceleration responses with the seat’s TMD are also lower than that of both the SS and RS under the bumpy road surface. Therefore, the structure of the TMD should be designed and added to the seat suspension to enhance the driver’s seat ride comfort.","PeriodicalId":262664,"journal":{"name":"Vibroengineering PROCEDIA","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new design of seat suspension using different models of negative stiffness structure\",\"authors\":\"Huan Yuan, Hongwei Li, Wei Lu\",\"doi\":\"10.21595/vp.2023.23403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three models of seat suspension using the negative stiffness structure including steel springs (SS), roller springs (RS), and tuned mass damper (TMD) are proposed and studied to improve the driver's seat ride comfort. Based on the dynamic models of the SS, RS, and TMD, their isolation efficiency and driver’s ride comfort are evaluated via two indexes of the root mean square displacement and acceleration of the seat (<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:msub><mml:mrow><mml:mi>z</mml:mi></mml:mrow><mml:mrow><mml:mi>w</mml:mi><mml:mi>s</mml:mi></mml:mrow></mml:msub></mml:math> and <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:msub><mml:mrow><mml:mi>a</mml:mi></mml:mrow><mml:mrow><mml:mi>w</mml:mi><mml:mi>s</mml:mi></mml:mrow></mml:msub></mml:math>) under two excitations of the random road surface and bumpy road surface. The results show that under the random road surface, the <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:msub><mml:mrow><mml:mi>z</mml:mi></mml:mrow><mml:mrow><mml:mi>w</mml:mi><mml:mi>s</mml:mi></mml:mrow></mml:msub></mml:math> and <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:msub><mml:mrow><mml:mi>a</mml:mi></mml:mrow><mml:mrow><mml:mi>w</mml:mi><mml:mi>s</mml:mi></mml:mrow></mml:msub></mml:math> with the seat's RS are reduced by 10.31 % and 20.32 % in comparison with the seat’s SS; whereas the <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:msub><mml:mrow><mml:mi>z</mml:mi></mml:mrow><mml:mrow><mml:mi>w</mml:mi><mml:mi>s</mml:mi></mml:mrow></mml:msub></mml:math> and <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:msub><mml:mrow><mml:mi>a</mml:mi></mml:mrow><mml:mrow><mml:mi>w</mml:mi><mml:mi>s</mml:mi></mml:mrow></mml:msub></mml:math> with the seat's TMD are smaller than that of the seat's RS by 19.15 % and 26.13 %; and the seat’s SS by 27.49 % and 41.15 %, respectively. Besides, the seat's displacement and acceleration responses with the seat’s TMD are also lower than that of both the SS and RS under the bumpy road surface. Therefore, the structure of the TMD should be designed and added to the seat suspension to enhance the driver’s seat ride comfort.\",\"PeriodicalId\":262664,\"journal\":{\"name\":\"Vibroengineering PROCEDIA\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibroengineering PROCEDIA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21595/vp.2023.23403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibroengineering PROCEDIA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/vp.2023.23403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new design of seat suspension using different models of negative stiffness structure
Three models of seat suspension using the negative stiffness structure including steel springs (SS), roller springs (RS), and tuned mass damper (TMD) are proposed and studied to improve the driver's seat ride comfort. Based on the dynamic models of the SS, RS, and TMD, their isolation efficiency and driver’s ride comfort are evaluated via two indexes of the root mean square displacement and acceleration of the seat (zws and aws) under two excitations of the random road surface and bumpy road surface. The results show that under the random road surface, the zws and aws with the seat's RS are reduced by 10.31 % and 20.32 % in comparison with the seat’s SS; whereas the zws and aws with the seat's TMD are smaller than that of the seat's RS by 19.15 % and 26.13 %; and the seat’s SS by 27.49 % and 41.15 %, respectively. Besides, the seat's displacement and acceleration responses with the seat’s TMD are also lower than that of both the SS and RS under the bumpy road surface. Therefore, the structure of the TMD should be designed and added to the seat suspension to enhance the driver’s seat ride comfort.