单轴压缩矩形网格的屈曲

Francesca Pancella, Yuri De Santis, Angelo Luongo
{"title":"单轴压缩矩形网格的屈曲","authors":"Francesca Pancella, Yuri De Santis, Angelo Luongo","doi":"10.21595/vp.2023.23419","DOIUrl":null,"url":null,"abstract":"A theoretical analysis of the buckling of mono-axially compressed rectangular grid is carried out. The grid is composed of two orthogonal orders of continuous beams, simply supported at the ends. The critical load is determined by two different models: (i) the Kirchhoff’s homogeneous orthotropic plate, and (ii) a system of beams, solved by the Rayleigh-Ritz method. Parametric studies are carried out and numerical examples developed. The analytical solutions are validated by comparison with numerical Finite Element analyses.","PeriodicalId":262664,"journal":{"name":"Vibroengineering PROCEDIA","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Buckling of mono-axially compressed rectangular grids\",\"authors\":\"Francesca Pancella, Yuri De Santis, Angelo Luongo\",\"doi\":\"10.21595/vp.2023.23419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A theoretical analysis of the buckling of mono-axially compressed rectangular grid is carried out. The grid is composed of two orthogonal orders of continuous beams, simply supported at the ends. The critical load is determined by two different models: (i) the Kirchhoff’s homogeneous orthotropic plate, and (ii) a system of beams, solved by the Rayleigh-Ritz method. Parametric studies are carried out and numerical examples developed. The analytical solutions are validated by comparison with numerical Finite Element analyses.\",\"PeriodicalId\":262664,\"journal\":{\"name\":\"Vibroengineering PROCEDIA\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibroengineering PROCEDIA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21595/vp.2023.23419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibroengineering PROCEDIA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/vp.2023.23419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对单轴压缩矩形网格的屈曲进行了理论分析。网格由两个正交的连续梁组成,两端简单支承。临界荷载由两种不同的模型确定:(i)基尔霍夫均匀正交各向异性板,(ii)梁系统,用瑞利-里兹方法求解。进行了参数化研究并开发了数值算例。通过与数值有限元分析的对比,验证了解析解的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Buckling of mono-axially compressed rectangular grids
A theoretical analysis of the buckling of mono-axially compressed rectangular grid is carried out. The grid is composed of two orthogonal orders of continuous beams, simply supported at the ends. The critical load is determined by two different models: (i) the Kirchhoff’s homogeneous orthotropic plate, and (ii) a system of beams, solved by the Rayleigh-Ritz method. Parametric studies are carried out and numerical examples developed. The analytical solutions are validated by comparison with numerical Finite Element analyses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信