{"title":"单轴压缩矩形网格的屈曲","authors":"Francesca Pancella, Yuri De Santis, Angelo Luongo","doi":"10.21595/vp.2023.23419","DOIUrl":null,"url":null,"abstract":"A theoretical analysis of the buckling of mono-axially compressed rectangular grid is carried out. The grid is composed of two orthogonal orders of continuous beams, simply supported at the ends. The critical load is determined by two different models: (i) the Kirchhoff’s homogeneous orthotropic plate, and (ii) a system of beams, solved by the Rayleigh-Ritz method. Parametric studies are carried out and numerical examples developed. The analytical solutions are validated by comparison with numerical Finite Element analyses.","PeriodicalId":262664,"journal":{"name":"Vibroengineering PROCEDIA","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Buckling of mono-axially compressed rectangular grids\",\"authors\":\"Francesca Pancella, Yuri De Santis, Angelo Luongo\",\"doi\":\"10.21595/vp.2023.23419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A theoretical analysis of the buckling of mono-axially compressed rectangular grid is carried out. The grid is composed of two orthogonal orders of continuous beams, simply supported at the ends. The critical load is determined by two different models: (i) the Kirchhoff’s homogeneous orthotropic plate, and (ii) a system of beams, solved by the Rayleigh-Ritz method. Parametric studies are carried out and numerical examples developed. The analytical solutions are validated by comparison with numerical Finite Element analyses.\",\"PeriodicalId\":262664,\"journal\":{\"name\":\"Vibroengineering PROCEDIA\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibroengineering PROCEDIA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21595/vp.2023.23419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibroengineering PROCEDIA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/vp.2023.23419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Buckling of mono-axially compressed rectangular grids
A theoretical analysis of the buckling of mono-axially compressed rectangular grid is carried out. The grid is composed of two orthogonal orders of continuous beams, simply supported at the ends. The critical load is determined by two different models: (i) the Kirchhoff’s homogeneous orthotropic plate, and (ii) a system of beams, solved by the Rayleigh-Ritz method. Parametric studies are carried out and numerical examples developed. The analytical solutions are validated by comparison with numerical Finite Element analyses.