{"title":"金属增材制造过程中残余应力和变形建模研究进展","authors":"Asim Rashid, Aditya Gopaluni","doi":"10.1016/j.cjmeam.2023.100102","DOIUrl":null,"url":null,"abstract":"<div><p>A metal additive manufacturing process results in a nearly net-shaped fabrication of parts directly from digital data. A local heat source melts the deposited material, and a part is built layer-by-layer. Residual stress and deformation are critical issues experienced by additively manufactured parts. Modeling the additive manufacturing process provides important insights and can help determine an optimal build plan so as to minimize residual stress formation. Various approaches have been used for modeling of residual stresses, ranging from high-fidelity models to simplified models, for quicker results. This paper provides a state-of-the-art review of the approaches used to numerically model residual deformation and stresses in structures built using additive manufacturing. Furthermore, it describes the physical causes of residual-stress generation in an additively manufactured structure.</p></div>","PeriodicalId":100243,"journal":{"name":"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers","volume":"2 4","pages":"Article 100102"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772665723000417/pdfft?md5=feea7a899c77d326a94cfda9fceb64dd&pid=1-s2.0-S2772665723000417-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A Review of Residual Stress and Deformation Modeling for Metal Additive Manufacturing Processes\",\"authors\":\"Asim Rashid, Aditya Gopaluni\",\"doi\":\"10.1016/j.cjmeam.2023.100102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A metal additive manufacturing process results in a nearly net-shaped fabrication of parts directly from digital data. A local heat source melts the deposited material, and a part is built layer-by-layer. Residual stress and deformation are critical issues experienced by additively manufactured parts. Modeling the additive manufacturing process provides important insights and can help determine an optimal build plan so as to minimize residual stress formation. Various approaches have been used for modeling of residual stresses, ranging from high-fidelity models to simplified models, for quicker results. This paper provides a state-of-the-art review of the approaches used to numerically model residual deformation and stresses in structures built using additive manufacturing. Furthermore, it describes the physical causes of residual-stress generation in an additively manufactured structure.</p></div>\",\"PeriodicalId\":100243,\"journal\":{\"name\":\"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers\",\"volume\":\"2 4\",\"pages\":\"Article 100102\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772665723000417/pdfft?md5=feea7a899c77d326a94cfda9fceb64dd&pid=1-s2.0-S2772665723000417-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772665723000417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772665723000417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Review of Residual Stress and Deformation Modeling for Metal Additive Manufacturing Processes
A metal additive manufacturing process results in a nearly net-shaped fabrication of parts directly from digital data. A local heat source melts the deposited material, and a part is built layer-by-layer. Residual stress and deformation are critical issues experienced by additively manufactured parts. Modeling the additive manufacturing process provides important insights and can help determine an optimal build plan so as to minimize residual stress formation. Various approaches have been used for modeling of residual stresses, ranging from high-fidelity models to simplified models, for quicker results. This paper provides a state-of-the-art review of the approaches used to numerically model residual deformation and stresses in structures built using additive manufacturing. Furthermore, it describes the physical causes of residual-stress generation in an additively manufactured structure.