{"title":"消失的Krein参数对Delsarte设计的影响及其在有限几何中的应用","authors":"John Bamberg, Jesse Lansdown","doi":"10.5802/alco.246","DOIUrl":null,"url":null,"abstract":"In this paper we show that if θ is a T-design of an association scheme (Ω,ℛ), and the Krein parameters q i,j h vanish for some h∉T and all i,j∉T (i,j,h≠0), then θ consists of precisely half of the vertices of (Ω,ℛ) or it is a T ′ -design, where |T ′ |>|T|. We then apply this result to various problems in finite geometry. In particular, we show for the first time that nontrivial m-ovoids of generalised octagons of order (s,s 2 ) do not exist. We give short proofs of similar results for (i) partial geometries with certain order conditions; (ii) thick generalised quadrangles of order (s,s 2 ); (iii) the dual polar spaces DQ(2d,q), DW(2d-1,q) and DH(2d-1,q 2 ), for d≥3; (iv) the Penttila–Williford scheme. In the process of (iv), we also consider a natural generalisation of the Penttila–Williford scheme in Q - (2n-1,q), n⩾3.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Implications of vanishing Krein parameters on Delsarte designs, with applications in finite geometry\",\"authors\":\"John Bamberg, Jesse Lansdown\",\"doi\":\"10.5802/alco.246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we show that if θ is a T-design of an association scheme (Ω,ℛ), and the Krein parameters q i,j h vanish for some h∉T and all i,j∉T (i,j,h≠0), then θ consists of precisely half of the vertices of (Ω,ℛ) or it is a T ′ -design, where |T ′ |>|T|. We then apply this result to various problems in finite geometry. In particular, we show for the first time that nontrivial m-ovoids of generalised octagons of order (s,s 2 ) do not exist. We give short proofs of similar results for (i) partial geometries with certain order conditions; (ii) thick generalised quadrangles of order (s,s 2 ); (iii) the dual polar spaces DQ(2d,q), DW(2d-1,q) and DH(2d-1,q 2 ), for d≥3; (iv) the Penttila–Williford scheme. In the process of (iv), we also consider a natural generalisation of the Penttila–Williford scheme in Q - (2n-1,q), n⩾3.\",\"PeriodicalId\":36046,\"journal\":{\"name\":\"Algebraic Combinatorics\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Implications of vanishing Krein parameters on Delsarte designs, with applications in finite geometry
In this paper we show that if θ is a T-design of an association scheme (Ω,ℛ), and the Krein parameters q i,j h vanish for some h∉T and all i,j∉T (i,j,h≠0), then θ consists of precisely half of the vertices of (Ω,ℛ) or it is a T ′ -design, where |T ′ |>|T|. We then apply this result to various problems in finite geometry. In particular, we show for the first time that nontrivial m-ovoids of generalised octagons of order (s,s 2 ) do not exist. We give short proofs of similar results for (i) partial geometries with certain order conditions; (ii) thick generalised quadrangles of order (s,s 2 ); (iii) the dual polar spaces DQ(2d,q), DW(2d-1,q) and DH(2d-1,q 2 ), for d≥3; (iv) the Penttila–Williford scheme. In the process of (iv), we also consider a natural generalisation of the Penttila–Williford scheme in Q - (2n-1,q), n⩾3.