消失的Krein参数对Delsarte设计的影响及其在有限几何中的应用

Q3 Mathematics
John Bamberg, Jesse Lansdown
{"title":"消失的Krein参数对Delsarte设计的影响及其在有限几何中的应用","authors":"John Bamberg, Jesse Lansdown","doi":"10.5802/alco.246","DOIUrl":null,"url":null,"abstract":"In this paper we show that if θ is a T-design of an association scheme (Ω,ℛ), and the Krein parameters q i,j h vanish for some h∉T and all i,j∉T (i,j,h≠0), then θ consists of precisely half of the vertices of (Ω,ℛ) or it is a T ′ -design, where |T ′ |>|T|. We then apply this result to various problems in finite geometry. In particular, we show for the first time that nontrivial m-ovoids of generalised octagons of order (s,s 2 ) do not exist. We give short proofs of similar results for (i) partial geometries with certain order conditions; (ii) thick generalised quadrangles of order (s,s 2 ); (iii) the dual polar spaces DQ(2d,q), DW(2d-1,q) and DH(2d-1,q 2 ), for d≥3; (iv) the Penttila–Williford scheme. In the process of (iv), we also consider a natural generalisation of the Penttila–Williford scheme in Q - (2n-1,q), n⩾3.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Implications of vanishing Krein parameters on Delsarte designs, with applications in finite geometry\",\"authors\":\"John Bamberg, Jesse Lansdown\",\"doi\":\"10.5802/alco.246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we show that if θ is a T-design of an association scheme (Ω,ℛ), and the Krein parameters q i,j h vanish for some h∉T and all i,j∉T (i,j,h≠0), then θ consists of precisely half of the vertices of (Ω,ℛ) or it is a T ′ -design, where |T ′ |>|T|. We then apply this result to various problems in finite geometry. In particular, we show for the first time that nontrivial m-ovoids of generalised octagons of order (s,s 2 ) do not exist. We give short proofs of similar results for (i) partial geometries with certain order conditions; (ii) thick generalised quadrangles of order (s,s 2 ); (iii) the dual polar spaces DQ(2d,q), DW(2d-1,q) and DH(2d-1,q 2 ), for d≥3; (iv) the Penttila–Williford scheme. In the process of (iv), we also consider a natural generalisation of the Penttila–Williford scheme in Q - (2n-1,q), n⩾3.\",\"PeriodicalId\":36046,\"journal\":{\"name\":\"Algebraic Combinatorics\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文证明了如果θ是关联方案(Ω,∈T)的T-设计,且对于某些h∈T和所有i,j∈T (i,j,h≠0),Krein参数q i,j h消失,则θ恰好由(Ω,∈T)的一半顶点组成,或者是一个T ' -设计,其中|T ' |>|T|。然后我们将这个结果应用于有限几何中的各种问题。特别地,我们首次证明了(s, s2)阶广义八边形的非平凡m-卵圆不存在。对于(i)具有一定序条件的部分几何,我们给出了类似结果的简短证明;(ii)阶(s,s 2)的粗广义四边形;(iii)当d≥3时,DQ(2d,q)、DW(2d-1,q)和DH(2d-1, q2)的对偶极空间;(iv) penttila - willford计划。在(iv)过程中,我们还考虑在Q - (2n-1, Q), n大于或小于3中Penttila-Williford方案的自然推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implications of vanishing Krein parameters on Delsarte designs, with applications in finite geometry
In this paper we show that if θ is a T-design of an association scheme (Ω,ℛ), and the Krein parameters q i,j h vanish for some h∉T and all i,j∉T (i,j,h≠0), then θ consists of precisely half of the vertices of (Ω,ℛ) or it is a T ′ -design, where |T ′ |>|T|. We then apply this result to various problems in finite geometry. In particular, we show for the first time that nontrivial m-ovoids of generalised octagons of order (s,s 2 ) do not exist. We give short proofs of similar results for (i) partial geometries with certain order conditions; (ii) thick generalised quadrangles of order (s,s 2 ); (iii) the dual polar spaces DQ(2d,q), DW(2d-1,q) and DH(2d-1,q 2 ), for d≥3; (iv) the Penttila–Williford scheme. In the process of (iv), we also consider a natural generalisation of the Penttila–Williford scheme in Q - (2n-1,q), n⩾3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信