一维Mott变距跳变的异常标度区

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
David A. Croydon, Ryoki Fukushima, Stefan Junk
{"title":"一维Mott变距跳变的异常标度区","authors":"David A. Croydon, Ryoki Fukushima, Stefan Junk","doi":"10.1214/22-aap1915","DOIUrl":null,"url":null,"abstract":"We derive an anomalous, sub-diffusive scaling limit for a one-dimen-sional version of the Mott random walk. The limiting process can be viewed heuristically as a one-dimensional diffusion with an absolutely continuous speed measure and a discontinuous scale function, as given by a two-sided stable subordinator. Corresponding to intervals of low conductance in the discrete model, the discontinuities in the scale function act as barriers off which the limiting process reflects for some time before crossing. We also discuss how, by incorporating a Bouchaud trap model element into the setting, it is possible to combine this “blocking” mechanism with one of “trapping”. Our proof relies on a recently developed theory that relates the convergence of processes to that of associated resistance metric measure spaces.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":"16 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Anomalous scaling regime for one-dimensional Mott variable-range hopping\",\"authors\":\"David A. Croydon, Ryoki Fukushima, Stefan Junk\",\"doi\":\"10.1214/22-aap1915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive an anomalous, sub-diffusive scaling limit for a one-dimen-sional version of the Mott random walk. The limiting process can be viewed heuristically as a one-dimensional diffusion with an absolutely continuous speed measure and a discontinuous scale function, as given by a two-sided stable subordinator. Corresponding to intervals of low conductance in the discrete model, the discontinuities in the scale function act as barriers off which the limiting process reflects for some time before crossing. We also discuss how, by incorporating a Bouchaud trap model element into the setting, it is possible to combine this “blocking” mechanism with one of “trapping”. Our proof relies on a recently developed theory that relates the convergence of processes to that of associated resistance metric measure spaces.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1915\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aap1915","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

摘要

我们推导了莫特随机漫步的一维版本的异常,次扩散缩放极限。极限过程可以启发式地看作是一个具有绝对连续速度测度和不连续尺度函数的一维扩散,由一个双边稳定从属函数给出。与离散模型中的低电导区间相对应,尺度函数中的不连续点充当屏障,极限过程在穿越之前将其反射一段时间。我们还讨论了如何通过将布绍陷阱模型元素纳入设置中,将这种“阻塞”机制与“陷阱”机制结合起来。我们的证明依赖于一个最近发展的理论,该理论将过程的收敛性与相关的电阻度量度量空间的收敛性联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomalous scaling regime for one-dimensional Mott variable-range hopping
We derive an anomalous, sub-diffusive scaling limit for a one-dimen-sional version of the Mott random walk. The limiting process can be viewed heuristically as a one-dimensional diffusion with an absolutely continuous speed measure and a discontinuous scale function, as given by a two-sided stable subordinator. Corresponding to intervals of low conductance in the discrete model, the discontinuities in the scale function act as barriers off which the limiting process reflects for some time before crossing. We also discuss how, by incorporating a Bouchaud trap model element into the setting, it is possible to combine this “blocking” mechanism with one of “trapping”. Our proof relies on a recently developed theory that relates the convergence of processes to that of associated resistance metric measure spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信