渐增上鞅耦合的基于势的构造

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Erhan Bayraktar, Shuoqing Deng, Dominykas Norgilas
{"title":"渐增上鞅耦合的基于势的构造","authors":"Erhan Bayraktar, Shuoqing Deng, Dominykas Norgilas","doi":"10.1214/22-aap1907","DOIUrl":null,"url":null,"abstract":"The increasing supermartingale coupling, introduced by Nutz and Stebegg (Ann. Probab. 46 (2018) 3351–3398) is an extreme point of the set of “supermartingale” couplings between two real probability measures in convex-decreasing order. In the present paper we provide an explicit construction of a triple of functions, on the graph of which the increasing supermartingale coupling concentrates. In particular, we show that the increasing supermartingale coupling can be identified with the left-curtain martingale coupling and the antitone coupling to the left and to the right of a uniquely determined regime-switching point, respectively. Our construction is based on the concept of the shadow measure. We show how to determine the potential of the shadow measure associated to a supermartingale, extending the recent results of Beiglböck et al. (Electron. Commun. Probab. 27 (2022) 1–12) obtained in the martingale setting.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":"102 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A potential-based construction of the increasing supermartingale coupling\",\"authors\":\"Erhan Bayraktar, Shuoqing Deng, Dominykas Norgilas\",\"doi\":\"10.1214/22-aap1907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing supermartingale coupling, introduced by Nutz and Stebegg (Ann. Probab. 46 (2018) 3351–3398) is an extreme point of the set of “supermartingale” couplings between two real probability measures in convex-decreasing order. In the present paper we provide an explicit construction of a triple of functions, on the graph of which the increasing supermartingale coupling concentrates. In particular, we show that the increasing supermartingale coupling can be identified with the left-curtain martingale coupling and the antitone coupling to the left and to the right of a uniquely determined regime-switching point, respectively. Our construction is based on the concept of the shadow measure. We show how to determine the potential of the shadow measure associated to a supermartingale, extending the recent results of Beiglböck et al. (Electron. Commun. Probab. 27 (2022) 1–12) obtained in the martingale setting.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1907\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aap1907","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

摘要

由Nutz和Stebegg (Ann)提出的渐增的上鞅耦合。Probab. 46(2018) 3351-3398)是两个实概率测度之间以凸递减顺序的“上鞅”耦合集的极值点。在本文中,我们给出了一个三重函数的显式构造,其上鞅耦合集中在图上。特别地,我们证明了增加的上鞅耦合可以分别识别为一个唯一确定的状态切换点的左幕鞅耦合和左、右对调耦合。我们的建筑是基于阴影测量的概念。我们展示了如何确定与上鞅相关的阴影测量的潜力,扩展了Beiglböck等人的最新结果。Commun。概率27(2022)1-12)在鞅设置中获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A potential-based construction of the increasing supermartingale coupling
The increasing supermartingale coupling, introduced by Nutz and Stebegg (Ann. Probab. 46 (2018) 3351–3398) is an extreme point of the set of “supermartingale” couplings between two real probability measures in convex-decreasing order. In the present paper we provide an explicit construction of a triple of functions, on the graph of which the increasing supermartingale coupling concentrates. In particular, we show that the increasing supermartingale coupling can be identified with the left-curtain martingale coupling and the antitone coupling to the left and to the right of a uniquely determined regime-switching point, respectively. Our construction is based on the concept of the shadow measure. We show how to determine the potential of the shadow measure associated to a supermartingale, extending the recent results of Beiglböck et al. (Electron. Commun. Probab. 27 (2022) 1–12) obtained in the martingale setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信