{"title":"Boltzmann和McKean-Vlasov型流的构造(缝纫引理法)","authors":"Aurélien Alfonsi, Vlad Bally","doi":"10.1214/22-aap1894","DOIUrl":null,"url":null,"abstract":"We are concerned with a mixture of Boltzmann and McKean–Vlasov-type equations, this means (in probabilistic terms) equations with coefficients depending on the law of the solution itself, and driven by a Poisson point measure with the intensity depending also on the law of the solution. Both the analytical Boltzmann equation and the probabilistic interpretation initiated by Tanaka (Z. Wahrsch. Verw. Gebiete 46 (1978/79) 67–105; J. Fac. Sci., Univ. Tokyo, Sect. IA, Math. 34 (1987) 351–369) have intensively been discussed in the literature for specific models related to the behavior of gas molecules. In this paper, we consider general abstract coefficients that may include mean field effects and then we discuss the link with specific models as well. In contrast with the usual approach in which integral equations are used in order to state the problem, we employ here a new formulation of the problem in terms of flows of self-maps on the space of probability measure endowed with the Wasserstein distance. This point of view already appeared in the framework of rough differential equations. Our results concern existence and uniqueness of the solution, in the formulation of flows, but we also prove that the “flow solution” is a solution of the classical integral weak equation and admits a probabilistic interpretation. Moreover, we obtain stability results and regularity with respect to the time for such solutions. Finally we prove the convergence of empirical measures based on particle systems to the solution of our problem, and we obtain the rate of convergence. We discuss as examples the homogeneous and the inhomogeneous Boltzmann (Enskog) equation with hard potentials.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Boltzmann and McKean–Vlasov type flows (the sewing lemma approach)\",\"authors\":\"Aurélien Alfonsi, Vlad Bally\",\"doi\":\"10.1214/22-aap1894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are concerned with a mixture of Boltzmann and McKean–Vlasov-type equations, this means (in probabilistic terms) equations with coefficients depending on the law of the solution itself, and driven by a Poisson point measure with the intensity depending also on the law of the solution. Both the analytical Boltzmann equation and the probabilistic interpretation initiated by Tanaka (Z. Wahrsch. Verw. Gebiete 46 (1978/79) 67–105; J. Fac. Sci., Univ. Tokyo, Sect. IA, Math. 34 (1987) 351–369) have intensively been discussed in the literature for specific models related to the behavior of gas molecules. In this paper, we consider general abstract coefficients that may include mean field effects and then we discuss the link with specific models as well. In contrast with the usual approach in which integral equations are used in order to state the problem, we employ here a new formulation of the problem in terms of flows of self-maps on the space of probability measure endowed with the Wasserstein distance. This point of view already appeared in the framework of rough differential equations. Our results concern existence and uniqueness of the solution, in the formulation of flows, but we also prove that the “flow solution” is a solution of the classical integral weak equation and admits a probabilistic interpretation. Moreover, we obtain stability results and regularity with respect to the time for such solutions. Finally we prove the convergence of empirical measures based on particle systems to the solution of our problem, and we obtain the rate of convergence. We discuss as examples the homogeneous and the inhomogeneous Boltzmann (Enskog) equation with hard potentials.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1894\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aap1894","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Construction of Boltzmann and McKean–Vlasov type flows (the sewing lemma approach)
We are concerned with a mixture of Boltzmann and McKean–Vlasov-type equations, this means (in probabilistic terms) equations with coefficients depending on the law of the solution itself, and driven by a Poisson point measure with the intensity depending also on the law of the solution. Both the analytical Boltzmann equation and the probabilistic interpretation initiated by Tanaka (Z. Wahrsch. Verw. Gebiete 46 (1978/79) 67–105; J. Fac. Sci., Univ. Tokyo, Sect. IA, Math. 34 (1987) 351–369) have intensively been discussed in the literature for specific models related to the behavior of gas molecules. In this paper, we consider general abstract coefficients that may include mean field effects and then we discuss the link with specific models as well. In contrast with the usual approach in which integral equations are used in order to state the problem, we employ here a new formulation of the problem in terms of flows of self-maps on the space of probability measure endowed with the Wasserstein distance. This point of view already appeared in the framework of rough differential equations. Our results concern existence and uniqueness of the solution, in the formulation of flows, but we also prove that the “flow solution” is a solution of the classical integral weak equation and admits a probabilistic interpretation. Moreover, we obtain stability results and regularity with respect to the time for such solutions. Finally we prove the convergence of empirical measures based on particle systems to the solution of our problem, and we obtain the rate of convergence. We discuss as examples the homogeneous and the inhomogeneous Boltzmann (Enskog) equation with hard potentials.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.