Jean-Rene Chazottes, Sandro Gallo, Daniel Takahashi
{"title":"无界记忆随机链的高斯浓度界","authors":"Jean-Rene Chazottes, Sandro Gallo, Daniel Takahashi","doi":"10.1214/22-aap1893","DOIUrl":null,"url":null,"abstract":"Stochastic chains of unbounded memory (SCUMs) are generalization of Markov chains, also known in the literature as “chains with complete connections” or “g-measures”. We obtain Gaussian concentration bounds (GCB) in this large class of models, for general alphabets, under two different conditions on the kernel: (1) when the sum of its oscillations is less than one, or (2) when the sum of its variations is finite, that is, belongs to ℓ1(N). We also obtain explicit constants as functions of the parameters of the model. Our conditions are sharp in the sense that we exhibit examples of SCUMs that do not have GCB and for which the sum of oscillations is 1+ϵ, or the variation belongs to ℓ1+ϵ(N) for any ϵ>0. These examples are based on the existence of phase transitions. We illustrate our results with four applications. First, we derive a Dvoretzky–Kiefer–Wolfowitz-type inequality which gives a uniform control on the fluctuations of the empirical measure. Second, in the finite-alphabet case, we obtain an upper bound on the d¯-distance between two stationary SCUMs and, as a by-product, we obtain new explicit bounds on the speed of Markovian approximation in d¯. Third, we derive new bounds on the fluctuations of the “plug-in” estimator for entropy. Fourth, we obtain new rate of convergence for the maximum likelihood estimator of conditional probability.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gaussian concentration bounds for stochastic chains of unbounded memory\",\"authors\":\"Jean-Rene Chazottes, Sandro Gallo, Daniel Takahashi\",\"doi\":\"10.1214/22-aap1893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stochastic chains of unbounded memory (SCUMs) are generalization of Markov chains, also known in the literature as “chains with complete connections” or “g-measures”. We obtain Gaussian concentration bounds (GCB) in this large class of models, for general alphabets, under two different conditions on the kernel: (1) when the sum of its oscillations is less than one, or (2) when the sum of its variations is finite, that is, belongs to ℓ1(N). We also obtain explicit constants as functions of the parameters of the model. Our conditions are sharp in the sense that we exhibit examples of SCUMs that do not have GCB and for which the sum of oscillations is 1+ϵ, or the variation belongs to ℓ1+ϵ(N) for any ϵ>0. These examples are based on the existence of phase transitions. We illustrate our results with four applications. First, we derive a Dvoretzky–Kiefer–Wolfowitz-type inequality which gives a uniform control on the fluctuations of the empirical measure. Second, in the finite-alphabet case, we obtain an upper bound on the d¯-distance between two stationary SCUMs and, as a by-product, we obtain new explicit bounds on the speed of Markovian approximation in d¯. Third, we derive new bounds on the fluctuations of the “plug-in” estimator for entropy. Fourth, we obtain new rate of convergence for the maximum likelihood estimator of conditional probability.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1893\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aap1893","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Gaussian concentration bounds for stochastic chains of unbounded memory
Stochastic chains of unbounded memory (SCUMs) are generalization of Markov chains, also known in the literature as “chains with complete connections” or “g-measures”. We obtain Gaussian concentration bounds (GCB) in this large class of models, for general alphabets, under two different conditions on the kernel: (1) when the sum of its oscillations is less than one, or (2) when the sum of its variations is finite, that is, belongs to ℓ1(N). We also obtain explicit constants as functions of the parameters of the model. Our conditions are sharp in the sense that we exhibit examples of SCUMs that do not have GCB and for which the sum of oscillations is 1+ϵ, or the variation belongs to ℓ1+ϵ(N) for any ϵ>0. These examples are based on the existence of phase transitions. We illustrate our results with four applications. First, we derive a Dvoretzky–Kiefer–Wolfowitz-type inequality which gives a uniform control on the fluctuations of the empirical measure. Second, in the finite-alphabet case, we obtain an upper bound on the d¯-distance between two stationary SCUMs and, as a by-product, we obtain new explicit bounds on the speed of Markovian approximation in d¯. Third, we derive new bounds on the fluctuations of the “plug-in” estimator for entropy. Fourth, we obtain new rate of convergence for the maximum likelihood estimator of conditional probability.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.