{"title":"摄动线性谐振子的弱湍流解","authors":"Erwan Faou, Pierre Raphaël","doi":"10.1353/ajm.2023.a907703","DOIUrl":null,"url":null,"abstract":"abstract: We introduce specific solutions to the linear harmonic oscillator, named bubbles. They form resonant families of invariant tori of the linear dynamics, with arbitrarily large Sobolev norms. We use these modulated bubbles of energy to construct a class of potentials which are real, smooth, time dependent and uniformly decaying to zero with respect to time, such that the corresponding perturbed quantum harmonic oscillator admits solutions which exhibit a logarithmic growth of Sobolev norms. The resonance mechanism is explicit in space variables and produces highly oscillatory solutions. We then give several recipes to construct similar examples using more specific tools based on the continuous resonant (CR) equation in dimension two.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"48 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"On weakly turbulent solutions to the perturbed linear harmonic oscillator\",\"authors\":\"Erwan Faou, Pierre Raphaël\",\"doi\":\"10.1353/ajm.2023.a907703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"abstract: We introduce specific solutions to the linear harmonic oscillator, named bubbles. They form resonant families of invariant tori of the linear dynamics, with arbitrarily large Sobolev norms. We use these modulated bubbles of energy to construct a class of potentials which are real, smooth, time dependent and uniformly decaying to zero with respect to time, such that the corresponding perturbed quantum harmonic oscillator admits solutions which exhibit a logarithmic growth of Sobolev norms. The resonance mechanism is explicit in space variables and produces highly oscillatory solutions. We then give several recipes to construct similar examples using more specific tools based on the continuous resonant (CR) equation in dimension two.\",\"PeriodicalId\":7453,\"journal\":{\"name\":\"American Journal of Mathematics\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1353/ajm.2023.a907703\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/ajm.2023.a907703","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On weakly turbulent solutions to the perturbed linear harmonic oscillator
abstract: We introduce specific solutions to the linear harmonic oscillator, named bubbles. They form resonant families of invariant tori of the linear dynamics, with arbitrarily large Sobolev norms. We use these modulated bubbles of energy to construct a class of potentials which are real, smooth, time dependent and uniformly decaying to zero with respect to time, such that the corresponding perturbed quantum harmonic oscillator admits solutions which exhibit a logarithmic growth of Sobolev norms. The resonance mechanism is explicit in space variables and produces highly oscillatory solutions. We then give several recipes to construct similar examples using more specific tools based on the continuous resonant (CR) equation in dimension two.
期刊介绍:
The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.