作为时空马尔可夫链极限的一般扩散过程

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Alexis Anagnostakis, Antoine Lejay, Denis Villemonais
{"title":"作为时空马尔可夫链极限的一般扩散过程","authors":"Alexis Anagnostakis, Antoine Lejay, Denis Villemonais","doi":"10.1214/22-aap1902","DOIUrl":null,"url":null,"abstract":"We prove the convergence of the law of grid-valued random walks, which can be seen as time-space Markov chains, to the law of a general diffusion process. This includes processes with sticky features, reflecting or absorbing boundaries and skew behavior. We prove that the convergence occurs at any rate strictly inferior to (1/4)∧(1/p) in terms of the maximum cell size of the grid, for any p-Wasserstein distance. We also show that it is possible to achieve any rate strictly inferior to (1/2)∧(2/p) if the grid is adapted to the speed measure of the diffusion, which is optimal for p≤4. This result allows us to set up asymptotically optimal approximation schemes for general diffusion processes. Last, we experiment numerically on diffusions that exhibit various features.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":"55 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"General diffusion processes as limit of time-space Markov chains\",\"authors\":\"Alexis Anagnostakis, Antoine Lejay, Denis Villemonais\",\"doi\":\"10.1214/22-aap1902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the convergence of the law of grid-valued random walks, which can be seen as time-space Markov chains, to the law of a general diffusion process. This includes processes with sticky features, reflecting or absorbing boundaries and skew behavior. We prove that the convergence occurs at any rate strictly inferior to (1/4)∧(1/p) in terms of the maximum cell size of the grid, for any p-Wasserstein distance. We also show that it is possible to achieve any rate strictly inferior to (1/2)∧(2/p) if the grid is adapted to the speed measure of the diffusion, which is optimal for p≤4. This result allows us to set up asymptotically optimal approximation schemes for general diffusion processes. Last, we experiment numerically on diffusions that exhibit various features.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1902\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aap1902","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

我们证明了网格值随机游走(可看作是时空马尔可夫链)规律对一般扩散过程规律的收敛性。这包括具有粘性特征、反射或吸收边界和倾斜行为的过程。我们证明了对于任意p- wasserstein距离,对于网格的最大单元尺寸,收敛发生在严格低于(1/4)∧(1/p)的任何速率下。我们还证明,如果网格适合于扩散的速度测量,则可以达到严格低于(1/2)∧(2/p)的任何速率,这在p≤4时是最优的。这一结果使我们能够建立一般扩散过程的渐近最优逼近格式。最后,我们对表现出各种特征的扩散进行了数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General diffusion processes as limit of time-space Markov chains
We prove the convergence of the law of grid-valued random walks, which can be seen as time-space Markov chains, to the law of a general diffusion process. This includes processes with sticky features, reflecting or absorbing boundaries and skew behavior. We prove that the convergence occurs at any rate strictly inferior to (1/4)∧(1/p) in terms of the maximum cell size of the grid, for any p-Wasserstein distance. We also show that it is possible to achieve any rate strictly inferior to (1/2)∧(2/p) if the grid is adapted to the speed measure of the diffusion, which is optimal for p≤4. This result allows us to set up asymptotically optimal approximation schemes for general diffusion processes. Last, we experiment numerically on diffusions that exhibit various features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信