变分学与广义导数最优控制

IF 0.7 4区 数学 Q2 MATHEMATICS
Maria N. F. Barreto, Gastão Frederico, José Vanterler da Costa Sousa, Juan E. Napoles Valdes
{"title":"变分学与广义导数最优控制","authors":"Maria N. F. Barreto, Gastão Frederico, José Vanterler da Costa Sousa, Juan E. Napoles Valdes","doi":"10.1216/rmj.2023.53.1337","DOIUrl":null,"url":null,"abstract":"Using the recently defined generalized derivative, we present a generalized formulation of variation of calculus, which includes the classical and conformable formulation as particular cases. In the first part of the article, through the properties of this generalized derivative, we discuss the generalized versions of the Bois–Reymond lemma, a Tonelli-type existence theorem, Euler–Lagrange equation, d’Alembert principle, du Bois–Reymond optimality condition and Noether’s theorem. In the second part, we discuss the Picard–Lindelöf theorem, Grönwall’s inequality, Pontryagin’s maximum principle and Noether’s principle for optimal control. We end with an application involving the time fractional Schrödinger equation.","PeriodicalId":49591,"journal":{"name":"Rocky Mountain Journal of Mathematics","volume":"14 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CALCULUS OF VARIATIONS AND OPTIMAL CONTROL WITH GENERALIZED DERIVATIVE\",\"authors\":\"Maria N. F. Barreto, Gastão Frederico, José Vanterler da Costa Sousa, Juan E. Napoles Valdes\",\"doi\":\"10.1216/rmj.2023.53.1337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the recently defined generalized derivative, we present a generalized formulation of variation of calculus, which includes the classical and conformable formulation as particular cases. In the first part of the article, through the properties of this generalized derivative, we discuss the generalized versions of the Bois–Reymond lemma, a Tonelli-type existence theorem, Euler–Lagrange equation, d’Alembert principle, du Bois–Reymond optimality condition and Noether’s theorem. In the second part, we discuss the Picard–Lindelöf theorem, Grönwall’s inequality, Pontryagin’s maximum principle and Noether’s principle for optimal control. We end with an application involving the time fractional Schrödinger equation.\",\"PeriodicalId\":49591,\"journal\":{\"name\":\"Rocky Mountain Journal of Mathematics\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rocky Mountain Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1216/rmj.2023.53.1337\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rocky Mountain Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1216/rmj.2023.53.1337","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用最近定义的广义导数,给出了微积分变分的一个广义公式,其中包括经典公式和符合公式。在文章的第一部分,通过该广义导数的性质,讨论了Bois-Reymond引理的广义版本、tonellitype存在性定理、Euler-Lagrange方程、d 'Alembert原理、du Bois-Reymond最优性条件和Noether定理。第二部分讨论了Picard-Lindelöf定理、Grönwall不等式、Pontryagin极大值原理和Noether最优控制原理。我们以一个涉及时间分数Schrödinger方程的应用程序结束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CALCULUS OF VARIATIONS AND OPTIMAL CONTROL WITH GENERALIZED DERIVATIVE
Using the recently defined generalized derivative, we present a generalized formulation of variation of calculus, which includes the classical and conformable formulation as particular cases. In the first part of the article, through the properties of this generalized derivative, we discuss the generalized versions of the Bois–Reymond lemma, a Tonelli-type existence theorem, Euler–Lagrange equation, d’Alembert principle, du Bois–Reymond optimality condition and Noether’s theorem. In the second part, we discuss the Picard–Lindelöf theorem, Grönwall’s inequality, Pontryagin’s maximum principle and Noether’s principle for optimal control. We end with an application involving the time fractional Schrödinger equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
71
审稿时长
7.5 months
期刊介绍: Rocky Mountain Journal of Mathematics publishes both research and expository articles in mathematics, and particularly invites well-written survey articles. The Rocky Mountain Journal of Mathematics endeavors to publish significant research papers and substantial expository/survey papers in a broad range of theoretical and applied areas of mathematics. For this reason the editorial board is broadly based and submissions are accepted in most areas of mathematics. In addition, the journal publishes specialized conference proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信