{"title":"偏集的弦和完全零因子图及其在代数结构图中的应用","authors":"Nilesh Khandekar, Vinayak Joshi","doi":"10.1515/ms-2023-0081","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, we characterize the perfect zero-divisor graphs and chordal zero-divisor graphs (its complement) of ordered sets. These results are applied to the zero-divisor graphs of finite reduced rings, the comaximal ideal graphs of rings, the annihilating ideal graphs of rings, the intersection graphs of ideals of rings, and the intersection graphs of subgroups of groups. In fact, it is shown that these graphs associated with a commutative ring R with identity can be effectively studied via the zero-divisor graph of a specially constructed poset from R .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Chordal and Perfect Zero-Divisor Graphs of Posets and Applications to Graphs Associated with Algebraic Structures\",\"authors\":\"Nilesh Khandekar, Vinayak Joshi\",\"doi\":\"10.1515/ms-2023-0081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this paper, we characterize the perfect zero-divisor graphs and chordal zero-divisor graphs (its complement) of ordered sets. These results are applied to the zero-divisor graphs of finite reduced rings, the comaximal ideal graphs of rings, the annihilating ideal graphs of rings, the intersection graphs of ideals of rings, and the intersection graphs of subgroups of groups. In fact, it is shown that these graphs associated with a commutative ring R with identity can be effectively studied via the zero-divisor graph of a specially constructed poset from R .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ms-2023-0081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ms-2023-0081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chordal and Perfect Zero-Divisor Graphs of Posets and Applications to Graphs Associated with Algebraic Structures
ABSTRACT In this paper, we characterize the perfect zero-divisor graphs and chordal zero-divisor graphs (its complement) of ordered sets. These results are applied to the zero-divisor graphs of finite reduced rings, the comaximal ideal graphs of rings, the annihilating ideal graphs of rings, the intersection graphs of ideals of rings, and the intersection graphs of subgroups of groups. In fact, it is shown that these graphs associated with a commutative ring R with identity can be effectively studied via the zero-divisor graph of a specially constructed poset from R .