{"title":"偏集的弦和完全零因子图及其在代数结构图中的应用","authors":"Nilesh Khandekar, Vinayak Joshi","doi":"10.1515/ms-2023-0081","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, we characterize the perfect zero-divisor graphs and chordal zero-divisor graphs (its complement) of ordered sets. These results are applied to the zero-divisor graphs of finite reduced rings, the comaximal ideal graphs of rings, the annihilating ideal graphs of rings, the intersection graphs of ideals of rings, and the intersection graphs of subgroups of groups. In fact, it is shown that these graphs associated with a commutative ring R with identity can be effectively studied via the zero-divisor graph of a specially constructed poset from R .","PeriodicalId":18282,"journal":{"name":"Mathematica Slovaca","volume":"18 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Chordal and Perfect Zero-Divisor Graphs of Posets and Applications to Graphs Associated with Algebraic Structures\",\"authors\":\"Nilesh Khandekar, Vinayak Joshi\",\"doi\":\"10.1515/ms-2023-0081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this paper, we characterize the perfect zero-divisor graphs and chordal zero-divisor graphs (its complement) of ordered sets. These results are applied to the zero-divisor graphs of finite reduced rings, the comaximal ideal graphs of rings, the annihilating ideal graphs of rings, the intersection graphs of ideals of rings, and the intersection graphs of subgroups of groups. In fact, it is shown that these graphs associated with a commutative ring R with identity can be effectively studied via the zero-divisor graph of a specially constructed poset from R .\",\"PeriodicalId\":18282,\"journal\":{\"name\":\"Mathematica Slovaca\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Slovaca\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ms-2023-0081\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Slovaca","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ms-2023-0081","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Chordal and Perfect Zero-Divisor Graphs of Posets and Applications to Graphs Associated with Algebraic Structures
ABSTRACT In this paper, we characterize the perfect zero-divisor graphs and chordal zero-divisor graphs (its complement) of ordered sets. These results are applied to the zero-divisor graphs of finite reduced rings, the comaximal ideal graphs of rings, the annihilating ideal graphs of rings, the intersection graphs of ideals of rings, and the intersection graphs of subgroups of groups. In fact, it is shown that these graphs associated with a commutative ring R with identity can be effectively studied via the zero-divisor graph of a specially constructed poset from R .
期刊介绍:
Mathematica Slovaca, the oldest and best mathematical journal in Slovakia, was founded in 1951 at the Mathematical Institute of the Slovak Academy of Science, Bratislava. It covers practically all mathematical areas. As a respectful international mathematical journal, it publishes only highly nontrivial original articles with complete proofs by assuring a high quality reviewing process. Its reputation was approved by many outstanding mathematicians who already contributed to Math. Slovaca. It makes bridges among mathematics, physics, soft computing, cryptography, biology, economy, measuring, etc. The Journal publishes original articles with complete proofs. Besides short notes the journal publishes also surveys as well as some issues are focusing on a theme of current interest.