Anjali Pal, Brett Saiki, Ryan Tjoa, Cynthia Richey, Amy Zhu, Oliver Flatt, Max Willsey, Zachary Tatlock, Chandrakana Nandi
{"title":"平等饱和理论探讨,la Carte","authors":"Anjali Pal, Brett Saiki, Ryan Tjoa, Cynthia Richey, Amy Zhu, Oliver Flatt, Max Willsey, Zachary Tatlock, Chandrakana Nandi","doi":"10.1145/3622834","DOIUrl":null,"url":null,"abstract":"Rewrite rules are critical in equality saturation, an increasingly popular technique in optimizing compilers, synthesizers, and verifiers. Unfortunately, developing high-quality rulesets is difficult and error-prone. Recent work on automatically inferring rewrite rules does not scale to large terms or grammars, and existing rule inference tools are monolithic and opaque. Equality saturation users therefore struggle to guide inference and incrementally construct rulesets. As a result, most users still manually develop and maintain rulesets. This paper proposes Enumo, a new domain-specific language for programmable theory exploration. Enumo provides a small set of core operators that enable users to strategically guide rule inference and incrementally build rulesets. Short Enumo programs easily replicate results from state-of-the-art tools, but Enumo programs can also scale to infer deeper rules from larger grammars than prior approaches. Its composable operators even facilitate developing new strategies for ruleset inference. We introduce a new fast-forwarding strategy that does not require evaluating terms in the target language, and can thus support domains that were out of scope for prior work. We evaluate Enumo and fast-forwarding across a variety of domains. Compared to state-of-the-art techniques, enumo can synthesize better rulesets over a diverse set of domains, in some cases matching the effects of manually-developed rulesets in systems driven by equality saturation.","PeriodicalId":20697,"journal":{"name":"Proceedings of the ACM on Programming Languages","volume":"171 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equality Saturation Theory Exploration à la Carte\",\"authors\":\"Anjali Pal, Brett Saiki, Ryan Tjoa, Cynthia Richey, Amy Zhu, Oliver Flatt, Max Willsey, Zachary Tatlock, Chandrakana Nandi\",\"doi\":\"10.1145/3622834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rewrite rules are critical in equality saturation, an increasingly popular technique in optimizing compilers, synthesizers, and verifiers. Unfortunately, developing high-quality rulesets is difficult and error-prone. Recent work on automatically inferring rewrite rules does not scale to large terms or grammars, and existing rule inference tools are monolithic and opaque. Equality saturation users therefore struggle to guide inference and incrementally construct rulesets. As a result, most users still manually develop and maintain rulesets. This paper proposes Enumo, a new domain-specific language for programmable theory exploration. Enumo provides a small set of core operators that enable users to strategically guide rule inference and incrementally build rulesets. Short Enumo programs easily replicate results from state-of-the-art tools, but Enumo programs can also scale to infer deeper rules from larger grammars than prior approaches. Its composable operators even facilitate developing new strategies for ruleset inference. We introduce a new fast-forwarding strategy that does not require evaluating terms in the target language, and can thus support domains that were out of scope for prior work. We evaluate Enumo and fast-forwarding across a variety of domains. Compared to state-of-the-art techniques, enumo can synthesize better rulesets over a diverse set of domains, in some cases matching the effects of manually-developed rulesets in systems driven by equality saturation.\",\"PeriodicalId\":20697,\"journal\":{\"name\":\"Proceedings of the ACM on Programming Languages\",\"volume\":\"171 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3622834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3622834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Rewrite rules are critical in equality saturation, an increasingly popular technique in optimizing compilers, synthesizers, and verifiers. Unfortunately, developing high-quality rulesets is difficult and error-prone. Recent work on automatically inferring rewrite rules does not scale to large terms or grammars, and existing rule inference tools are monolithic and opaque. Equality saturation users therefore struggle to guide inference and incrementally construct rulesets. As a result, most users still manually develop and maintain rulesets. This paper proposes Enumo, a new domain-specific language for programmable theory exploration. Enumo provides a small set of core operators that enable users to strategically guide rule inference and incrementally build rulesets. Short Enumo programs easily replicate results from state-of-the-art tools, but Enumo programs can also scale to infer deeper rules from larger grammars than prior approaches. Its composable operators even facilitate developing new strategies for ruleset inference. We introduce a new fast-forwarding strategy that does not require evaluating terms in the target language, and can thus support domains that were out of scope for prior work. We evaluate Enumo and fast-forwarding across a variety of domains. Compared to state-of-the-art techniques, enumo can synthesize better rulesets over a diverse set of domains, in some cases matching the effects of manually-developed rulesets in systems driven by equality saturation.